По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04

Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Сургут (3462)77-98-35 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16

Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Единый адрес: gct@nt-rt.ru

Веб-сайт: www.galltec.nt-rt.ru

Каталог продукции GALLTEC+MELA

Description

The controller EDJ_MIC for humidity and temperature consists of two integrated, digital microprocessor controllers and also an integrated 15-VDC power supply for the sensors.

The humidity temperature sensor type TFG80J, TFK80J or TFK120J (refer to page 2) with output signals 0 ... 20 mA is used as the readings recorder. The humidity and temperature values are displayed digitally on the EDJ_MIC controller as actual values.

The EDJ_MIC controller can be used as a two or three point controller. The output states are shown by LEDs.

The user-friendly EDJ_MIC controller is really very easy to use. It has been pre-programmed in the factory so that no particular previous knowledge of control engineering is required to be able to solve simple control tasks. After successfully connecting up and entering the target values, it is ready for immediate use to control humidifying or dehumidifying as well as heating and cooling.

Apart from that, the controller also allows you to solve complex control tasks. By using the keyboard to enter the parameters, you can set the PID characteristics of the controller and also the switching time, the switching hysteresis, the working point and also the output limiting.

The filters on the controller inputs filter out changes in the input signal which are too fast. The filter time constant can be set to between 0.0 ... 100.0 sec by pressing a button. Thus the control is no longer affected by distortions and transients.

A special feature of the EDJ_MIC is the self-optimisation. This means that the controller independently determines the optimal control parameters for a PID or PI controller in the given control environment.

The humidity and temperature controller type EDJ_MIC provides you with a control unit which can be used to solve a wide range of problems. The EDJ_MIC controller simultaneously acquires and controls the humidity and temperature and is thus suitable for controlling e.g. computer rooms, air conditioning and maturing chambers, monitoring and regulating the ambient conditions at print shops, in the textile industry, the film industry, in hothouses, in warehouses and many other places.

Digital

Dual Function Controller EDJ_MIC for **humidity** and **temperature Input: 2x 0...20mA** with integrated sensor power supply

Technical Data

Power supply

controller structures
A/D-transducer resolution > 15 Bit
Data storage EEPROM
sampling time 210ms
measurement accuracy <u><</u> 0,1% / 100ppm/K
outputs Relay Make contact (NO contact)
Output sensor supply 15 VDC max. 60 mA
Target value display 4-digit can be retrieved using keys
Actual value display 4-digit
housing
panel housing to IEC 61554 black
housing dimensions (HxBxT mm) 144 x 72 x 135
Contacts on the back using pluggable screw terminals
electromagnetic compatibility EN 61 326 ambient temperature+10+50°C
protective system, frontIP50
rear IP20

Technical Data for Humidity

Input	020mA
Control range	0100 %rh
Display range	00,0 100,0 %rh
output	

Technical Data for Temperature

input	020mA
Control range	10+90°C
Display range	
Output	

"subject to technical modifications"

For more complex control tasks and a wide range of sensors, our type EDR_MIC is available.

Please ask for the detailed data sheet.

Connecting Diagram

Dimensions

Sensor Data

Sensor Type	Measured Variable	Structural Shape	Order No.	for Controllers
TFG80J	Humidity and temperature	duct version	44623030	EDJ_MIC2/2
TFK80J	Humidity and temperature	duct version	58623030	EDJ_MIC2/2
TFK120J	Humidity and temperature	room version	59623030	EDJ_MIC2/2

Please refer to the respective data sheets for the technical data on the sensors!

Operation of the Controller

There are three buttons on the front of each of the two controllers: $\mathbf{P} \blacktriangle \mathbf{V}$

Use the **P** button to select the required parameter. The display changes between the description of the parameter and the value. You use the \blacktriangle or the \triangledown button to respectively increase or decrease the value for the parameter. The new value will be automatically saved after 2 sec. approx.

Switching on, setting the target value

After switching on, first of all a display check is carried out for 3 s. After that, the four-digit, seven segment displays show the actual values for the humidity and the temperature (**Normal display**). After pressing the **P** button, the first parameter will appear: **SP** the target value (**user interface**). It is set by pressing the \blacktriangle or the \triangledown q button and the new target value set is accepted after approx. 2 s. The normal display with the actual value is then retrieved by pressing the **P** button again or returns automatically after approx. 30 s.

Setting additional parameters

To avoid the parameters being inadvertently changed by people who are not experts, the **Parameter interface**, in which thirteen more parameters can be set, has been protected with a simple locking mechanism: : You can switch to the **Parameter interface** by pressing the **P** button for approx. 3seconds, either directly with the normal display, or on the user interface. The other parameters are also selected by pressing the **P** button and are then set with the \blacktriangle or the \triangledown button. Here the new values are also accepted after approx. 2 s, which is confirmed by the display flashing briefly once. After the last parameter, the SP (target value) is shown again at the end before normal display is resumed.

For most applications the EDJ_MIC controller works correctly with the factory settings. The user only has to set "SP", "db", "HYS.1", "HYS.2" and possibly "df". If the target value (SP) is now changed after making this adjustment, the control switching points do not move relatively to each other. The target value is always at half the contact distance (db) (refer to graphics p. 4).

We recommend that you do not change the other parameters without sufficient expertise in control engineering.

Self-optimization

In many cases, with this function the controller can determine the optimal parameters for a PID or PI controller. The following controller parameters are defined: rt, dt, Pb.1, Pb.2, CY 1, CY 2, df. Depending on the size of the system deviation, the controller chooses between two processes **a** or **b**.

Caution: Please make sure you make a note of the parameters set before implementing self-optimization!

To start self-optimization, the \blacktriangle buttons must be pressed simultaneously for 3 s. On the display "tunE" and the actual value are shown alternately. Self-optimization is ended automatically or can be cancelled by briefly pressing the \blacktriangle buttons simultaneously

Please note that the relative humidity depends on the temperature. For this reason it is necessary to start selfoptimization of humidity control at a constant temperature!

Alarm messages

The display for the process value flashes **1999**. The cause may be a over/underrange of the process value.

Parameter

Parameter	Value range	Explanation	Settin	igs
			factory-set	your setting
SP	20100%rh bei Feuchte -1090 °C bei Temperatur	setpoint	40,0%rh 25,0°C	
Pb.1	0,0999,9	proportional band 1 (controller output 1) P-action	0,0	
Pb.2	0,0999,9	proportional band 2 (controller output 2) P-action	0,0	
dt	09999s	derivative time D-action	80s	
rt	09999s	reset time I-action	343s	
CY 1	1,0999,9s	cycle time 1 (controller output 1)	20,0s	
CY 2	1,0999,9s	cycle time 2 (controller output 2)	20,0s	
db	0,0100,0	contact spacing	3,0 [%rh or °C]	
HYS.1	0,0999,9	differential 1 (controller output 1)	1,0 [%rh or °C]	
HYS.2	0,0999,9	differential 2 (controller output 2)	1,0 [%rh or °C]	
Y .0	-100100%	working point (working point)	0%	
Y .1	0100%	maximum output	100% *	
Y .2	-100100%	minimum output	-100% *	
dF	0,0100,0s	Filter time constant	0,6s	

Digital

Dual Function Controller EDR_MIC e.g. for humidity and temperature optional with integrated sensor power supply

Inputs:	standard signal 0/4 20mA standard signal 0/0.21 V			
	Pt100 (3-wir	e)	Pt1000 (3-w	vire)
	Pt100 (2-wir	e)	Pt1000 (2-w	vire)
	KTY11-6			
	Cu-Con	"T"	Fe-Con	"J"
	Cu-Con	"U"	Fe-Con	"L"
	NiCr-Ni	"K"	Pt10Rh-Pt	"S"
	Pt13Rh-Pt	"R"	Pt30Rh-Pt	"B"
	NiCrSi-NiSi	"N"		

Description

The dual function controller EDR_MIC e.g. for humidity and temperature consists of two integrated, digital microprocessor controllers and also, optional, an integrated 15-VDC power supply for the sensors.

Humidity temperature sensors with the standard signals 0/4...20mA, 0/0.2 ...1V or others are used as readings recorders. In the Galltec+Mela programme you will find a large selection of different sensors.

The humidity and temperature values are displayed digitally as actual values on the EDR_MIC controller.

The measurement ranges can be set to any scale within the maximum ranges.

The filters on the controller inputs filter out changes in the input signal which are too fast. The filter time constant can be set to between 0.0 ... 100.0 sec by pressing a button. Thus the control is no longer affected by distortions and transients.

The individual microprocessor controllers can be programmed independently of each other for the various control tasks. Whether as a two point controller, three point controller, with timer or ramp function - you decide through programming. The structure of the controller, e.g. as a PI controller or PID controller with the corresponding parameters, is also entered via the programming level. Thus a universal combination controller is at your disposal.

Technical Data

power supply

power supply
controller type two or three point controller
controller structures
A/D-transducer resolution > 15 bit
accuracy (timer) 0.7 % / 10ppm/K
data storage EEPROM
sampling time
measurement accuracy (analogue input) $\leq 0.1\% / 100$ ppm/K
outputs
make contact (NO contact)
output sensor supply (optional)
target value display
actual value display
housing panel housing to DIN43700 black
housing dimensions
contacts
on the back using screw terminals
conductor cross section
electromagnetic compatibility EN 61 326
ambient temperature
protective system, frontIP50
rearIP20
resistance to climatic conditions
$\dots \leq 75\%$ rh without condensation

Technical Data

inputs0/420mA
voltage drop current input: $\leq 1 \ V$ $R_{_E}$ voltage input
control rangedepending on sensor used display range

"subject to technical modifications"

Connecting Diagram

Dimensions

Operation of the Controller

Display and keys

(1) Display

7-segment display	4 places, green Display alternates when setpoints, parameters and codes are entered and indicated	5P260
Character height	10 mm	
Display range	-1999+9999 digit	
Decimal places	none, one, two	
Unit	°C/ °F (process value display)	

(2) Status indicators

LED	two LEDs for the outputs 1 and 2, yellow
-----	--

(3) Keys

₽,▲, ▼	for operating and programming the instrument. Dynamic modification of settings and parameters	
	 * Increase value with ▲ * Decrease value with ▲ Automatic value acceptance after 2 seconds. 	

Principle of operation

Normal display

The display shows the process value.

Operating level

The setpoint **SP** is input here. On active setpoint switching via the logic input, **SP 1** or **SP 2** appears in the display. When the ramp function is active, the ramp setpoint **SPr** is displayed. With activated timer function, the timer value **t**. or the timer start value **t**. **0** is shown.

The setpoint is altered dynamically using the \blacktriangle and \blacksquare keys. The setting will be accepted automatically after approx. 2 sec.

Parameter level

The setpoints, the limit value of the limit comparator, the controller parameters and the ramp slope are programmed here.

Configuration level

The basic functions of the controller are set here.

In order to make the settings, it is necessary to change to the configuration level via the parameter y .0 (parameter level).

Timer level

The current timer value (only when the timer has been started) and the timer start value are altered here. The parameters at this level are marked with an underscore in the display.

Time-out

If no operation occurs, the controller returns automatically to normal display after approx. 30 sec (exception: with timer functions starting via power ON, the timer value is displayed). If the timer value is displayed at the operating level, time-out is not active.

Operation of the timer function

Operation from the keys

The timer can be operated if the timer (operating level) is indicated. Time-out is not active here.

Operation via the logic input

If the logic input is configured accordingly, then a key, such as the key can be used. In this case, the timer can also be operated even if the timer value does not appear in the display.

Display	State/Action	Display	State/Action
E, 0 12.00	Timer not running * Start with	Ь 1 1.58	Timer has stopped * Continue with ▲ * Cancel with ▲ + ▼
F. 0 12,00	Timer has been started, but the tolerance limit has not yet been reached * Cancel with ▲ + ▼		Timer has run down * Acknowledge with any key (timer start value t. 0 is indi- cated). With time delayed control
E, (1×) [1 1 <u>*</u> 59]	Timer running; t ⋅ is displayed * Stop with ▲ * Cancel with ▲ + ▼		With time-delayed control (C120=3), acknowledge with ▲ + ▼
When the timer has bee	en started, the decimal point	in the display for the t	imer value will blink! 🛛 🔆

Functions

We recommend the following procedure:

Familiarize yourself with the controller functions	
Enter the configuration codes and the parameter values in the tables provided for this purpose in chapter "Configuration and parameter tables". Write down the appropriate values (\mathscr{N}) or mark selection with a cross ($\mathbf{x} \mathscr{N}$). The parameters and the configuration codes are listed in the order of their appearance. Parameters which are not relevant are masked out (see table below).	

* Enter the configuration code and parameters on the instrument

Configuration	Masking out the parameters for	Parameter		
Single-setpoint controller	Double-setpoint controller	Pb .2, CY 2, db, HYS.2		
Double-setpoint controller	Limit comparator	C114, HYSt, AL		
Limit comparator no function	Limit comparator	HYSt, AL		
Resistance thermometer, thermocouple	Standard signal scaling	SCL, SCH		
Ramp function off	Ramp function	rASd, SPr		
Setpoint switching not activated	Setpoints at the parameter level	SP 1, SP 2		
Timer function: no function	Timer function	t. , C 121, C 122, C 123		

Process value input

Symbol	Notes
C 111	Transducer/probe (process value input)
C 112	Unit of process value (°C/°F)/decimal places of display ⇒ page 12
SCL	Start/end value of value range for standard signals ⇒ page 14
SCH	Example: 020 mA → 20200°C: SCL = 20 / SCH =200
OFFS	Process value correction ⇒ page 14 Using the process value correction, a measured value can be corrected by a programmable amount upwards or downwards (offset). Lead compensation can be implemented in software for 2-wire circuit through process value correction. Examples: Measured value Offset Displayed value
	294,7 + 0,3 295,0 295,3 - 0,3 295,0
dF	Filter time constant (damping) to adapt the digital input filter (0sec = filter off) \Rightarrow page 15
	if dF high: high damping of interference signals slow reaction of the process value display to changes in the process value low cut-off frequency (2nd order low-pass filter)

Logic input

Key inhibit	Operation is possible from keys.	No operation from keys.		
Level inhibit	Access to the parameter and configu- ration levels is possible. Starting self-optimization is possible.	No access to the parameter and configu- ration levels. Starting self-optimization is not possible		
Ramp stop	Ramp running	Ramp stopped		
Setpoint switching	Setpoint SP 1 is active The appropriate symbols SP 1 and S	Setpoint SP 2 is active SP 2 are displayed at the operating level.		
Timer control	Ackowledge start/stop/continue/timer run-down (edge-triggered)			

Symbol	Notes	
C117	Function of the logic input	⇔ page 13

Controller

Controller structure

The controller structure is defined via the parameters Pb, dt and rt. Example: Setting for PI controllerr \rightarrow Pb .1 =120, dt =0s, rt =350sec

Symbol	Notes						
C113	Controller type and assignment of the controller outputs to the physical outputs 1+2						
C116	Outputs in fault condition ⇒ page 13 The switching states of the outputs are defined here in the event of over/underrange, probe break/ short circuit or display overflow. ⇒ Alarm messages ⇒						
Pb.1	Proportional band 1 (controller output 1) Proportional band 2 (controller output 2)						
Pb .2	Proportional band 2 (controller output 2) Influences the P action of the controller. If Pb=0 the controller structure is not effective.						
dt	Derivative time ⇒ page 15 Influences the D action of the controller. If dt=0 the controller has no D action.						
rt	Reset time						
Cy 1	Cycle time 1 (controller output 1) page 15 ⇒						
Cy 2	Cycle time 2 (controller output 2) The cycle time has to be selected so that the energy supply to the process is virtually continuous, while not subjecting the switching elements to excessive wear.						

Symbol	Notes
db	Contact spacing ⇒ page 15 for double-setpoint controller
HYS. 1 HYS.2	Differential 1 (controller output 1) Differential 2 (controller output 2) for controllers with Pb. 1 =0 or Pb.2 =0
у.0	Working point (basic load) ⇒ page 15 Output if process value = setpoint
Y.1 Y.2	Output limiting y . 1 - maximum output y .2 - minimum output
	For controllers without controller structure (Pb. 1 =0 or Pb.2 =0) it is necessary that $y \cdot 1 = 100\%$ and $y \cdot 2 = -100\%$.

Limit comparator (alarm contact)

Symbol	Notes					
C114	Limit comparator function (lk1lk8)	⇒	page 13			
HYSt	Differential of limit comparator	⇔	page 14			
AL	Limit value of limit comparator	⇒	page 15			

Symbol	Notes					
C115	Ramp function (on/off, time unit)	page 13				
C117	Ramp stop via logic input (floating contact)	⇔	page 13			
rASd	Ramp slope in °C/h or °C/min	page 15				

Self-optimization

Self-optimization determines the optimum controller parameters for PID or PI controllers. The following controller parameters are defined: **rt**, **dt**, **Pb** . **1**, **Pb** . **2**, **CY 1**, **CY 2**, **dF** IThe controller selects procedure **a** or **b**, depending on the size of the control deviation:

Starting self-optimization

Starting self-optimization is not possible with active level inhibit and ramp function.

Self-optimization is automatically terminated, or can be cancelled.

Level inhibit via code

As an alternative to the logic input, the level inhibit ca be set via a code (logic input has priority).

* Set the code using P + ▼ (at least 5sec) in normal display

Level inhibit via the logic input will lock the parameter and configuration levels (corresponds to code 011).

Code	Operating level	Parameter level	Configuration level	Timer level	
000	enabled	enabled	enabled	enabled	
001	enabled	enabled	inhibited	enabled	
011	enabled	inhibited	inhibited	enabled	
111	inhibited ¹	inhibited	inhibited	inhibited ²	

1. The values at the operating level can only be indicated but not modified.

2. Timer operation (start/stop/continue/cancel) will continue to be possible.

Timer function (extra code)

Using the timer function, the control action can be influenced by means of the adjustable time **t**. **0**. After the timer has been started by power ON, by pressing the key, or via the logic input, the timer start value **t**. **0** is counted down to 0, either instantly or after the process value has gone above or below a programmable tolerance limit. When the timer has run down, several events are triggered, such as control switch-off (output 0%) and setpoint switching. Furthermore, it is possible to implement timer signalling via an output.

Example:

- w setpoint
- x process value
- SP programmed setpoint
- t. 0 timer start value
- ----- timer signalling
 - (here C122=1)
- increment key

Notes on the timer function in conjunction with the ramp function

- Generally, the setpoints can also be approached using the ramp function.
- Stopping the timer does not influence the ramp function
- If control is active after the timer has run down, the current setpoint is approached with the ramp. Cancellation of the timer is followed by a setpoint step without ramp.
- For timer functions with a tolerance limit, only the setpoint (=ramp end value) is monitored.

Note on setpoint switching via the logic input

- Setpoint switching via the logic input is generally possible. An exception here is the timer function "Time-dependent setpoint switching". In this case, configured setpoint switching via the logic input will not be active.

Note on the display status in the event of a power failure

- The state of the display before the power failure will be restored, except for events that are related to the timer (start, cancel, continue, stop). Then the timer value will be shown in the display.

Symbol	Notes
C 121	Start condition of the timer ⇔ page 14
	The timer start value t. 0 is counted down as selected in the following events: 1. Power ON or logic input/keys
	 Start via keys/logic input Process value has reached tolerance limit (1°C or 5°C) (start via keys/logic input)
	The position of the tolerance limit depends on the controller type: - 1-setpoint controller (direct): tolerance limit above setpoint - 1-setpoint controller (reversed): tolerance limit below setpoint - 2-setpoint controller: tolerance limit below setpoint
	If, during the control process, the process value goes above/below the tolerance limit, the timer will be stopped for the duration of the infringement.
	Response to a power failure ⇒ page 14 After a power failure, the condition before the power failure can be restored, or the timer function can be cancelled. If the timer had run down before the power failure, the timer start value will be loaded. The timer will start automatically when C121=1 or 5. The timer value is saved at one minute intervals, to cover the case of a power failure.
C 122	Timer signalling ⇒ page 14 From the start of the timer function until timer run-down, a signal can be produced via an output.
C 123	Time unit for the timer ⊨⇒ page 14

Programming example

After the start via the logic input or from the keys, the process has to be controlled for 30 minutes to a setpoint of 80°C. The control action is to be cancelled in the event of a power failure.

Configuration:

- C111...C116: Controller programming
- C117=5: Logic input = timer control
- C120=1: Timer function = time-limited control
- C121=6: Start condition for timer = via logic input/keys -cancellation on power failure
- C122=0: Timer signalling = no function
- C123=1: Time unit (timer) = mm.ss

Operation:

- * Enter the setpoint **SP** (80°C)
- * Press the P key until **t. 0** is indicated
- * Change over to the timer level using P (at least 2sec)
- * Enter the timer start value **t. 0**_(30.00)
- * Return to the operating level (timer value) with P
- * Start the control action via the logic input or with

Operating level

1. SP 1, AL or Pb.1 is shown here, depending on the configuration.

C113	Controller type	Output 1 (relay)		Output 2+3 (logic+relay)		X A		
10 11 30 20 21 33	single setpoint (reversed) single setpoint (direct) double setpoint single setpoint (reversed) single setpoint (direct) double setpoint	controller controller controller reversed LK/timer signalling ¹ LK/timer signalling ¹ controller direct		LK/timer signalling LK/timer signalling controller direct controller controller controller) ¹			
\downarrow	1. A programmed limit comparator (LK) has priority of the timer signal							•
C114	Limit comparator (LK)	x 🖉	\rightarrow	C115	Ramp	function	х 🌽	
0 1 2 3 4 5 6 7 8	no function lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8		Ρ	0 1 2	ramp	function off function (°C/min) function (°C/h)		

reversed = heating (output is active when process value is below setpoint) direct = cooling (output is active when process value is above setpoint)

C116	Outputs	on fault	x	\rightarrow	C117	Logic input	x 🆉
0 1 2 3 4	0% ¹ 100% ² -100% ¹ 0% ¹ 100% ²	LK/timer signalling OFF LK/timer signalling ON		Р	0 1 2 3 4 5	no function key inhibit level inhibit ramp stop setpoint switching timer control	
	Minimum output limiting y.2 is effective Maximum output limiting y. 1 is effective					↓ ₽	

C120	Timer function	x 🆉				
0	no function					
1	time-limited control					
2	time-dependent setpoint switching					
3	time-delayed control					
4	timer (control independent of timer)					

J P

C121	Start condition for timer	Action on power failure	X 🏼
1	after power ON, logic input/keys	Condition as before the	
2	via logic input/keys	power failure	
3	via logic input/keys; timer counts 1°C		
	from tolerance limit		
4	via logic input/keys; timer counts5°C		
	from tolerance limit		
5	after power ON, logic input/keys	Cancellation of	
6	via logic input/keys	timer function	
7	via logic input/keys; timer counts 1°C	(StOP appears in the	
	from tolerance limit	display)	
8	via logic input/keys; timer counts 5°C		
	from tolerance limit		

The start conditions with tolerance limit (C121=3, 4, 7, 8) are not valid for C120=3 or 4. If C120 is altered, the validity of C121 must be checked.

C122	Timer signalling	x 🖉	\rightarrow	C123	Unit of time (timer)	X 🆉
0 1 2 3 4	no function timer start until run-down after run-down for 10sec after run-down for 1 min. after run-down until acknowledgement		Р	1 2 3 s = se h = hc	mm.ss (max. 99.59) hh.mm (max. 99.59) hhh.h (max. 999.9) conds; m = minutes; purs	
	utput has to be configured pondingly (C113).				P	

			\downarrow \Box	
Parameter	Explanation	Value range	factory-set	Your Setting
SCL	start valued of the standard signal	-1999 +9999 digit	0	
SCH	end value of the standard signal	-1999 +9999 digit	100	
SPL	lower setpoint limiting	-1999 +9999 digit	-200	
SPH	upper setpoint limiting	-1999 +9999 digit	850	
OFFS	process value correction	-1999 9999 digit ¹	0	
HYSt	switching differential of the limit comparator	0 9999 digit¹	1	

For displays with one or two decimal places, the value range and the factory setting change accordingly.
 Example: 1 decimal place → value range: -199,9...+999,9

₽ ←

Parameter	Explanation	Value range	factory-set	Your setting
SP 1	setpoint 1	SPL SPH	0	
SP 2	setpoint 2	SPL SPH	0	
AL	limit value of limit comparator	-1999 +9999 digit	0	
Pb . 1	proportional band 1	0 9999 digit ¹	0	
Pb .2	proportional band 2	0 9999 digit ¹	0	
dt	derivative time	0 9999 sec	80sec	
rt	reset time	0 9999sec	350sec	
Cy 1	cycle time 1	1.0 999.9sec	20,0sec	
Cy 2	cycle time 2	1.0 999.9sec	20.0 sec	
db	contact spacing	0 1000 digit ¹	0	
HYS. 1	differential 1	0 9999 digit ¹	1	
HYS.2	differential 2	0 9999 digit ¹	1	
Y.0	working point	-100 100%	0%	
Y.1	maximum output	0 100%	100%	
Y.2	minimum output	-100 +100%	-100%	
dF	filter time constant	0.0 100.0sec	0,6sec	
rASd	ramp slope	0 999 °C/h (°C/min)¹	0	

1. For displays with one or two decimal places, the value range and the factory setting change accordingly.

Alarm messages

Display	Description	Cause/response
·····································	The displays for the process value or timer value flashes "1999". Display current timer value by repeatedly pressing the P key.	Over/underrange of process value. Controller and limit comparators referred to the process value input behave in accord- ance with the configuration of the outputs. The timer is stopped.
	 The display for the timer value alternates between showing "StOP" and the time. * Acknowledge by using any key, (the timer start value t. 0 is loaded) 	The timer function has been cancelled due to a supply failure. The timer value that was present at the time of the supply failure will be indicated.

The following events come under the heading over/underrange:

- probe break/short-circuit

- Measurement is outside the control range of the probe that is connected

- Display overflow

Transducer		Overrange/ underrange	Probe/ lead short-circuit	Probe/lead break
Thermocouple		•	-	•
Resistance thermometer		•	•	•
Voltage	0.21V 01V	•	•	-
Current	4 20mA 0 20mA	•	•	• -

Measurement circuit monitoring (• = recognized)

Technical data

Input for thermocouple

Designation			Range
Fe-Con	"L"		-200 +900°C
Fe-Con	"J"	DIN EN 60584	4 -200 +1200°C
Cu-Con	"U"		-200 +600°C
Cu-Con	"T"	DIN EN 60584	4 -200 +400°C
NiCr-Ni	"K"	DIN EN 60584	4 -200 + 1372°C
NiCrSi-NiSi	"N"	DIN EN 60584	4 -200 +1300°C
Pt10Rh-Pt	"S"	DIN EN 60584	4 0 1768°C
Pt13Rh-Pt	"R"	DIN EN 60584	4 0 1768°C
Pt30Rh-Pt6Rh	"B"	DIN EN 60854	4 0 1820C ¹
Measurement a Cold junction:	ccura	acy: ≤ 0.4% / Pt 100 in	100ppm/°C ternal

Input for standard signals

Designation	Range
Voltage	0 1V, R _E > 10MΩ 0,2 1V, R _E > 10MΩ R _E - input resistance
Current	4 20mA, voltage drop \leq 1.5V 0 20mA, voltage drop \leq 1.5V
Measurement accu	uracy: ≤ 0.1% / 100ppm/K

1. Accuracy is assured within the range 300 ... 1820°C

Outputs

Relay:

Make contact (NO contact); 3A at 250V AC resistive load; 150.000 operations at rated load

Supply:

230V AC ±10%, 45 ... 55Hz

000

eStat10 Electronic room humidistat with 2 switching outputs

- Easy to install
- 2 potential-free switching outputs configurable as openers or closers
- 2 independently configurable setpoints
- 2 independently configurable switching hystereses
- Display of current relay switching states
- 2 continuous 0...10 V signal outputs for relative humidity and temperature
- Temperature compensation
- Alternating display of relative humidity and temperature

Technical Data

Humidity

Measuring range	0100 %rh
Setting range of the setpoints	595 %rh
Setting range of the switching hystereses	0.59 %rh
Measuring uncertainty 1090 %rh at 25 °C max 010 %rh and 90100 %rh at 25 °C Long term stability Hysteresis Typ. temperature influence at 25 °C	≤ ±3 %rh Additional ≤ ±0.2 %rh / %rh ≤ 0,5 %rh/a ±1 %rh ±0.05 %rh/K

Electrical data

Switching outputs:	2 relay contacts potential-free, normally open
Setting as opener / closer	Via DIP switch
Switching voltage	≤ 48V DC / AC ≥ 100 µV
Breaking capacity	\leq 60 W / 62.5 VA
Power factor	> 0.9
Switching cycles (at Pmax)	> 10 ⁵
Switching current	≤ 2A
Continuous output rel. humidity Continuous output temperature	
Supply voltage	1530 V DC 1326 V AC
Consumption	≤ 30 mA
Standards applied	EN 61326-1

Temperature

Output ranges	0+50 °C -30+70 °C 0+100 °C Further ranges on reguest
Measuring uncertainty at 23°C	Тур. ±0.3 К

General Data

Measuring medium condensing,	Air, non-pressurised, non- condensing,non-aggressive
Operating temperature	-30+60 °C
Storage temperature	-40+85 °C
Electrical connections at mains Wire cross-section at each co	
Cable diameter → Surface-mounted cable → Concealed cable See: User instructions on page	max. Ø 5 mm
Housing IP rating	IP 30D
Safety category	
Housing materials	ABS
Housing colour	Similar to RAL 9003 Signal white
Digital dispaly	2 lines

Connection diagrams

ESD protection advice

The devices contain components which can be damaged by the effects of electrical fields or by charge equalisation when touched.

The following protective measures must be taken when the housing of the device is to be opened for connection:

- Before opening the housing, ensure electrical potential equalisation between you and your environment.
- Pay particular attention to ensure that this potential equalisation is maintained while you are working with the housing open.

Dimensions

Drilling pattern

Opening the housing

Galltec+Mela eStat10 Page 2 of 4

Setting relay 1 and 2 as opener or closer

DIP-Switch	Current reading	
set to	< setpoint - <u>switching hysteresis</u> 2 > setpoint + <u>switching hysteresis</u> 2	
C (closer)	Relay = open Relay = closed	
O (opener)	Relay = closed Relay = open	

Installation instructions

Position	The installation site should be chosen such that a representative measurement of air humidity can be guaranteed, i.e. the humidity readings at the installation site should correspond to those in the room. Avoid areas in the vicinity of radiators, doors and exterior walls, as well as direct sunlight.
Flush mounting Connection to surface-mounted and concealed cables	When flush-mounting the device, appropriate seals should be used to prevent external air from reaching the sensor element of the device through the concealed housing. When connecting to a concealed cable, the knock-out part of the housing floor should be broken out to allow the cable to pass through. When connecting to a surface-mounted cable, the separators at the hollowed-out points in the side of the housing can be broken out.
Connection	The device must be connected by qualified personnel.
	The housing contains sensitive components. When opening the housing, electrostatic discharge (ESD) precautions must be observed.
	Leads connected to the sensor must not run parallel to strong electromagnetic fields.
	Where there is a possibility of voltage surges, install surge protection devices.

User instructions	
Damaging influences	Depending on their type and concentration, aggressive media containing solvents can cause incorrect reasings or cause the sensor to fail.
	Substances deposited on the sensor element (e. g. resin aerosols, paint aerosols, smoke deposits etc.) are harmful as they eventually form a water-repellent film.

This information is based on current knowledge and is intended to provide details of our products and their possible applications. It does not, therefore, act as a guarantee of specific properties of the products described or of their suitability for a particular application. In our experience, the equipment may be used across a broad spectrum of applications under the most varied conditions and loads. We cannot assess every individual case. Purchasers and/or users are responsible for checking the equipment for suitability for specific applications. Any existing industrial rights of protection must be observed. The quality of our products is guaranteed under our General Conditions of Sale. Datasheet eStat10. Issue: December 2014. Subject to modifications.

000

eStat10 DUO

Electronic Room Hygro-Thermostat 1 switching output each for temperature and humidity

- Easy to install
- 2 potential-free switching outputs configurable as opener or closer
- Setpoint and switching hystereses for temperature and relative humidity independently configurable
- Display of current relay switching states
- 2 continuous 0...10 V signal outputs for relative humidity and temperature
- Temperature compensation
- Alternating display of relative humidity and temperature

Technical Data

Humidity

Measuring range	0100 %rh
Control range of the relative humidity	595 %rh
Setting range of the switching hystereses	0.59 %rh
Measuring uncertainty 1090 %rh at 25 °C max 010 %rh and 90100 %rh at 25 °C Long term stability Hysteresis Typ. temperature influence	≤ ±3 %rh additional ≤ ±0.2 %rh / %rh ≤ 0.5 %rh/a ≤ ±1 %rh ±0.05 %rh/K
at 25 °C	

Electrical data

Switching outputs:	2 relay contacts potential-free, normally open
Setting as opener / closer	Via DIP switch
Switching voltage	≤ 48V DC / AC ≥ 100 µV
Breaking capacity	\leq 60 W / 62.5 VA
Power factor	> 0.9
Switching cycles (at Pmax)	> 10 ⁵
Switching current	≤2A
Continuous output rel. humidit Continuous output temperature	-
Supply voltage	1530 V DC 1326 V AC
Consumption	≤ 30 mA
Standards applied	EN 61326-1

Temperature

Control range of the temperature	-25+55 °C
Setting range of the switching hystereses	0.110 K
Output ranges Further ran	0+50 °C -30+70 °C 0+100 °C ages on demand
Measuring uncertainty at 23°C and ≤ mA switching current	typ. ±0.3 K

General Data

Air, non-pressurised, non- condensing, non-aggressive
-30+60 °C
-40+85 °C
erminals nection max. 1.5 mm ²
max. 1 x Ø 6.5 mm or 2 x Ø 4.5 mm
IP 30D
ABS
similar to RAL 9003 Signal white

Galltec+Mela eStat10 DUO Page 1 of 4

Connection diagrams

ESD protection advice

The devices contain components which can be damaged by the effects of electrical fields or by charge equalisation when touched.

The following protective measures must be taken when the housing of the device is to be opened for connection:

- Before opening the housing, ensure electrical potential equalisation between you and your environment.
- Pay particular attention to ensure that this potential equalisation is maintained while you are working with the housing open.

Dimensions

Drilling pattern

Opening the housing

Galltec+Mela eStat10 DUO Page 2 of 4

Setting relay 1 and 2 as opener or closer

DIP-Switch	Current reading		
set to	< setpoint - <u>switching hysteresis</u> 2	> setpoint + <u>switching hysteresis</u>	
C (Closer)	Relay = open	Relay = closed	
O (Opener)	Relay = closed	Relay = open	

Installation instructions	
Position	The installation site should be chosen such that a representative measurement of air humidity can be guaranteed, i.e. the humidity readings at the installation site should correspond to those in the room. Avoid areas in the vicinity of radiators, doors and exterior walls, as well as direct sunlight.
Flush mounting	When flush-mounting the device, appropriate seals should be used to prevent external air from reaching the sensor element of the device through the concealed
Connection to	housing.
surface-mounted	When connecting to a concealed cable, the knock-out part of the housing floor should
and concealed	be broken out to allow the cable to pass through.
cables	When connecting to a surface-mounted cable, the separators at the hollowed-out points in the side of the housing can be broken out.
Connection	The device must be connected by qualified personnel.
	The housing contains sensitive components. When opening the housing, electrostatic discharge (ESD) precautions must be observed.
	Leads connected to the sensor must not run parallel to strong electromagnetic fields.
	Where there is a possibility of voltage surges, install surge protection devices.

User instructions	
Damaging influences	Depending on their type and concentration, aggressive media containing solvents can cause incorrect reasings or cause the sensor to fail. Substances deposited on the sensor element (e. g. resin aerosols, paint aerosols, smoke deposits etc.) are harmful as they eventually form a water-repellent film.

This information is based on current knowledge and is intended to provide details of our products and their possible applications. It does not, therefore, act as a guarantee of specific properties of the products described or of their suitability for a particular application. In our experience, the equipment may be used across a broad spectrum of applications under the most varied conditions and loads. We cannot assess every individual case. Purchasers and/or users are responsible for checking the equipment for suitability for specific applications. Any existing industrial rights of protection must be observed. The quality of our products is guaranteed under our General Conditions of Sale. Datasheet eStat10-DUO_e. Issue: March 2015. Subject to modifications.

Galltec+Mela eStat10 DUO Page 4 of 4

eStat20 Electronic Humidistat with remote sensor head

- Easy to install
- up to 25 m cable length for remote sensor head
- 2 potential-free switching outputs configurable as openers or closers
- 2 independently configurable setpoints
- 2 independently configurable switching hystereses
- Display of current relay switching states
- 2 continuous 0...10 V signal outputs for relative humidity and temperature
- calibrated measuring probe in exchangeable plug-in design
- Alternating display of relative humidity and temperature
- Sensor head up to +125°C

Technical data

Humidity

Measuring range Setting range of the setpoints	0100 %rh 595 %rh 0.59 %rh
Setting range of the setpoints	
	0.59 %rh
Setting range of the switching hystereses	
Measuring uncertainty 1090 %rh at 25°C max 010 %rh and 90100 %rh at 25°C Long term stability Hysteresis Typ. temperature influence at 25°C	≤ ±2 %rh additional ≤ ±0.2 %rh / %rh ≤ 0.5 %rh/a ≤ ±1 %rh ±0.05%rh/K

Temperature

Output ranges		0+50°C -30+70°C
Sensor head high temp		0+100°C -40+125°C er ranges on request
Measuring uncertainty 560°C		typ. ±0.2K
Temperature influence a	t +5°C or +60°C	
Standard	-405°C	≤12mK/K
	6080°C	≤14mK/K
High temperature	60100°C	≤14mK/K additional
	100125°C	≤20mK/K

Electrical data

Switching outputs:	2 relay contacts potential-free, normally open
Setting as opener / closer	Via DIP switch
Switching voltage	≤ 48V DC / AC ≥ 100 μV
Breaking capacity	\leq 60 W / 62.5 VA
Power factor	≥ 0.9
Switching cycles (at Pmax)	> 10 ⁵
Switching current	≤ 2A
Continuous output rel. humidity Continuous output temperature	010 V DC 010 V DC
Load resistance (voltage output)	≥ 10 kΩ
Supply voltage	1530 V DC 1326 V AC
Consumption	≤ 30 mA
Directive about electromagnetic DIN EN 61326-1 DIN EN 61326-2-3	compatibility 2014/30/EU issue 07/13 issue 07/13

General data

Measuring medium non-	Air, non-pressurised, condensing, non-aggressive
Operating temperature housing sensor head (standard) sensor head+cable firmly conr sensor head high temperature	
Storage temperature	-40+80°C
Electrical connections at mains to Wire cross-section at each con Cable diameter	nnection max. 1.5 mm ²
\rightarrow Surface-mounted cable	max. 1 x Ø 6.5 mm or 2 x Ø 4.5 mm
→ Concealed cable see: user instructions on page 10	
degree of protection cable senso with membrane filter ZE08 (ba PTFE sintered filter ZE05 up to	sic equipment) IP30
Housing IP rating	IP 30D
Safety category	III
Materials housing cable sensor	ABS PC
Housing colour	signal white similar to RAL 9003
Cable length of remote sensor he	
standard max.	2 m 25 m
Display	2 lines 3 digits + 1 decimal place display approx. 21 x 40 mm ² digit height approx. 8 mm T + H alternating relay switching state 1 + 2

Working range humidity and temperature

Galltec+Mela eStat20 page 2 of 10

Dimensional drawing

Opening the housing

Drilling pattern

Fixing flange (accessories)

Galltec+Mela eStat20 page 3 of 10

Probe with cable

Probe Versions

Galltec+Mela eStat20 Page 4 of 10

Galltec+Mela eStat20 Page 5 of 10

Description controller	"Description probe optional equipment / accessories"
Controller for wall mounting with ventilation slots and display -30+60°C IP30 (housing) with cable connected connector cable length 2m (without probe) -40+80°C (cable)	
L	Probe pluggable with female socket Selection from 4 probe lengths: S, M, L, XL protective cage with membrane filter (ZE08) -40+85°C IP30 (when plugged)
L	Probe pluggable with female socket Selection from 4 probe lengths: S, M, L, XL PTFE sintered filter (ZE05) -40+85°C IP65 (when plugged)
Controller for wall mounting with ventilation slots and display with integrated connector (without probe) -30+60°C IP30 (when plugged)	
	Probe Selection from 3 probe lengths: S, M, L protective cage with membrane filter (ZE08) -40+85°C (probe), cable max. +80°C IP30 (probe) with cable connected female cable connector, cable length 2m (pluggable in the housing)
	Probe Selection from 3 probe lengths: S, M, L PTFE sintered filter (ZE05) -40+85°C (probe), cable max. +80°C IP65 (when plugged) with cable connected female cable connector, cable length 2m (pluggable in the housing)
	Probe Selection from 3 probe lengths: S, M, L PTFE sintered filter (ZE05) -40+125°C (probe + cable) IP65 (when plugged) with cable connected female cable connector, cable length 2m (pluggable in the housing)
connecting cable pluggable on both sides: cable end with cable plug connector to connect to the probe cable end with female cable connector to connect to the housing cable length 2m -40+80°C	

Description controller	"Description probe optional equipment / accessories"
Controller for wall mounting with ventilation slots and display -30+60°C (housing) IP30 (housing) with cable connected probe Selection from 3 probe lengths: S, M, L cable length 2m protective cage with membrane filter (ZE08) -40+85°C (probe), cable max. +80°C IP30 (probe)	
Controller for wall mounting with ventilation slots and display -30+60°C (housing) IP30 (housing) with cable connected probe Selection from 3 probe lengths: S, M, L cable length 2m PTFE sintered filter (ZE05) -40+85°C (probe), cable max. +80°C IP65 (probe)	
Controller for wall mounting with ventilation slots and display -30+60°C (housing) IP30 (housing) with cable connected probe Selection from 3 probe lengths: S, M, L cable length 2m PTFE sintered filter (ZE05) -40+125°C (probe + cable) IP65 (probe)	

Accessories

Product n°	Description
20.077	sintered filter made of fine-pored PTFE, IP 65
20.045	fixing flange, synthetic material, with fixing mechanism for easy sensor mounting and removal for sensors \varnothing 12 mm, with rubber sealing
ZE 31/1-12 ZE 31/1-75	humidity standard to check the accuracy of the sensor at 12 %RH humidity standard to check the accuracy of the sensor at 75 %RH
ZE 31/1-33 ZE 31/1-84	humidity standard to check the accuracy of the sensor at 33 %RH humidity standard to check the accuracy of the sensor at 84 %RH
ZE36	testing adapter for humidity standards for for sensor tubes Ø 12 mm

Galltec+Mela eStat20 page 8 of 10

DIP-Switch	Current	reading
set to	< setpoint value - <u>switching hysteresis</u> 2	> setpoint value + <u>switching hysteresis</u> 2
C (Closer)	relay = open	relay = closed
O (Opener)	relay = closed	relay = open
	Opener / Closer Rel1 0 ⊷ ■ C Opener / Closer Rel2 0 ∾ ■ C C	

Connection diagrams

ESD protection advice

The devices contain components, which can be damaged by the effects of electrical fields or by charge equalisation when touched.

The following protective measures must be taken when the housing of the device is to be opened for connection:

- Before opening the housing, ensure electrical potential equalisation between you and your environment.
- Pay particular attention to ensure that this potential equalisation is maintained while you are working with the opened housing.

Installation instructions

Position	The installation site of the remote probe should be chosen such that a representative measurement of air humidity can be guaranteed. Avoid areas in the vicinity of radia tors, doors and exterior walls, as well as direct sunlight.
	Do not position the sensor where ingress of water could occur.
	IP65 protection is - only ensured with PTFE sintered filter ZE05 with O-Ring - only ensured when the probe is plugged, see "Probe pluggable" on page 4.
	We recommend that you lay the connection lines in a loop so that any water that may be present can run off.
Operating temperature	Please note the maximum permissible ambient temperature for probe and housing when installing the sensor. When firmly connected the standard cable must not be exposed to an increased ambient temperature $> +80^{\circ}$ C.
Connection to surface-mounted and concealed cables	When connecting to a concealed cable, the knock-out part of the housing floor should be broken out to allow the cable to pass through. When connecting to a surface-mounted cable, the separators at the hollowed-out points in the side of the housing can be broken out.
Connection	The electrical connection must be carried out by properly qualified personnel only.
	The housing contains sensitive electrical components. When opening the housing, make sure you comply with the electrostatic discharge precautions.
	Lines to and from the sensor and the sensor cable must not be installed parallel to strong electromagnetical fields.
	The installation site should be chosen such that a representative measurement of air humidity can be guaranteed

User instructions

Cleaning of filters and protective baskets	If necessary, soiled filters and protective baskets can carefully be unscrewed and rinsed. Bear in mind the sensors will not measure accurately again until filters are completely dry.
Damaging influences	Depending on their type and concentration, aggressive media containing solvents can cause incorrect reasings or cause the sensor to fail. Substances deposited on the sensor element (e.g. resin aerosols, paint aerosols, smoke deposits etc.) are harmful as they eventually form a water-repellent film.

This information is based on current knowledge and is intended to provide details of our products and their possible applications. It does not, therefore, act as a guarantee of specific properties of the products described or of their suitability for a particular application. It is our experience that the equipment may be used across a broad spectrum of applications under the most varied conditions and loads. We cannot appraise every individual case. Purchasers and/or users are responsible for checking the equipment for suitability for any particular application. Any existing industrial rights of protection must be observed. The quality of our products is guaranteed under our General Conditions of Sale. Data sheet eStat20. Issue March 2017. Subject to modifications.

eStat20 DUO Electronic Hygro-Thermostat with remote sensor head

- · Easy to install
- up to 25 m cable length for remote sensor head
- 2 potential-free switching outputs configurable as openers or closers
- Setpoint and switching hystereses for temperature and relative humidity independently configurable
- · Display of current relay switching states
- 2 continuous 0...10 V signal outputs for relative humidity and temperature
- calibrated measuring probe in exchangeable plug-in design
- Alternating display of relative humidity and temperature
- Sensor head up to +125°C

Technical data

Humidity

Measuring range	0100 %rh
Control range of relative humidity	595 %rh
Setting range of the switching hystereses	0.59 %rh
Measuring uncertainty 1090 %rh at 25°C max 010 %rh and 90100 %rh at 25°C Long term stability Hysteresis Typ. temperature influence at 25°C	$\leq \pm 2 \% h$ additional $\leq \pm 0.2 \% h / \% h$ $\leq 0.5 \% h / a$ $\leq \pm 1 \% h$ $\pm 0.05\% r h / K$

Temperature

Control range of temp. standard high temperature		-35+80 °C -35+120 °C
Setting range of the set	tpoints	0.110 K
Output ranges, analogue		0+50 °C -30+70 °C 0+100 °C
sensor head high temperature further rar		-40+125°C anges on request
Measuring uncertainty 560°C	,	≤±0.35K
Influence of temperatu	re ref. to +5°C or +60°	С
Standard	-405°C 6080°C	≤12mK/K ≤14mK/K
High temperature	60100°C	≤14mK/K additional
	100125°C	≤20mK/K

Electrical data

Switching outputs:	2 relay contacts potential-free, normally open
Setting as opener / closer	Via DIP switch
Switching voltage	≤ 48V DC / AC ≥ 100 μV
Breaking capacity	\leq 60 W / 62.5 VA
Power factor	≥ 0.9
Switching cycles (at Pmax)	> 10 ⁵
Switching current	≤ 2A
Continuous output rel. humidity Continuous output temperature	010 V DC 010 V DC
Load resistance (voltage output)	≥ 10 kΩ
Supply voltage	1530 V DC 1326 V AC
Consumption	≤ 30 mA
Directive about electromagnetic DIN EN 61326-1 DIN EN 61326-2-3	c compatibility 2014/30/EU issue 07/13 issue 07/13

General data

Measuring medium non-	Air, non-pressurised, condensing, non-aggressive
Operating temperature housing sensor head (standard) sensor head+cable firmly conr sensor head high temperature	
Storage temperature	-40+80°C
Electrical connections at mains to Wire cross-section at each con Cable diameter	
\rightarrow Surface-mounted cable	max. 1 x Ø 6.5 mm or 2 x Ø 4.5 mm
→ Concealed cable see: user instructions on page 10	
degree of protection cable senso with membrane filter ZE08 (ba PTFE sintered filter ZE05 up to	sic equipment) IP30
Housing IP rating	IP 30D
Safety category	III
Materials housing cable sensor	ABS PC
Housing colour	signal white similar to RAL 9003
Cable length of remote sensor he standard max.	ead 2 m 25 m
Display	2 lines
ызрау	3 digits + 1 decimal place display approx. 21 x 40 mm ² digit height approx. 8 mm T + H alternating relay switching state 1 + 2

Working range humidity and temperature

Galltec+Mela eStat20 DUO Page 2 of 10

Dimensional drawing

Opening the housing

Drilling pattern

Fixing flange (accessories)

Galltec+Mela eStat20 DUO Page 3 of 10

Probe with cable

Probe pluggable

(not possible for cable probe high temperature +125°C)

Probe Versions

Galltec+Mela eStat20 DUO Page 4 of 10

Galltec+Mela eStat20 DUO Page 5 of 10

Description controller	"Description probe optional equipment / accessories"
Controller for wall mounting with ventilation slots and display -30+60°C IP30 (housing) with cable connected connector cable length 2m (without probe) -40+80°C (cable)	
	Probe pluggable with female socket Selection from 4 probe lengths: S, M, L, XL protective cage with membrane filter (ZE08) -40+85°C IP30 (when plugged)
	Probe pluggable with female socket Selection from 4 probe lengths: S, M, L, XL PTFE sintered filter (ZE05) -40+85°C IP65 (when plugged)
Controller for wall mounting with ventilation slots and display with integrated connector (without probe) -30+60°C IP30 (when plugged)	
	Probe Selection from 3 probe lengths: S, M, L protective cage with membrane filter (ZE08) -40+85°C (probe), cable max. +80°C IP30 (probe) with cable connected female cable connector, cable length 2m (pluggable in the housing)
	Probe Selection from 3 probe lengths: S, M, L PTFE sintered filter (ZE05) -40+85°C (probe), cable max. +80°C IP65 (when plugged) with cable connected female cable connector, cable length 2m (pluggable in the housing)
	Probe Selection from 3 probe lengths: S, M, L PTFE sintered filter (ZE05) -40+125°C (probe + cable) IP65 (when plugged) with cable connected female cable connector, cable length 2m (pluggable in the housing)
connecting cable pluggable on both sides: cable end with cable plug connector to connect to the probe cable end with female cable connector to connect to the housing cable length 2m -40+80°C	

Galltec+Mela eStat20 DUO Page 6 of 10

Description controller	"Description probe optional equipment / accessories"
Controller for wall mounting with ventilation slots and display -30+60°C (housing) IP30 (housing) with cable connected probe Selection from 3 probe lengths: S, M, L cable length 2m protective cage with membrane filter (ZE08) -40+85°C (probe), cable max. +80°C IP30 (probe)	
Controller for wall mounting with ventilation slots and display -30+60°C (housing) IP30 (housing) with cable connected probe Selection from 3 probe lengths: S, M, L cable length 2m PTFE sintered filter (ZE05) -40+85°C (probe), cable max. +80°C IP65 (probe)	
Controller for wall mounting with ventilation slots and display -30+60°C (housing) IP30 (housing) with cable connected probe Selection from 3 probe lengths: S, M, L cable length 2m PTFE sintered filter (ZE05) -40+125°C (probe + cable) IP65 (probe)	

Accessories

Product n°	Description
20.077	sintered filter made of fine-pored PTFE, IP 65
20.045	fixing flange, synthetic material, with fixing mechanism for easy sensor mounting and removal for sensors \varnothing 12 mm, with rubber sealing
ZE 31/1-12 ZE 31/1-75	humidity standard to check the accuracy of the sensor at 12 %RH humidity standard to check the accuracy of the sensor at 75 %RH
ZE 31/1-33 ZE 31/1-84	humidity standard to check the accuracy of the sensor at 33 %RH humidity standard to check the accuracy of the sensor at 84 %RH
ZE36	testing adapter for humidity standards for for sensor tubes \emptyset 12 mm

Galltec+Mela eStat20 DUO Page 8 of 10

Setting relay 1 and 2 as opener or closer

DIP-Switch	Current	Current reading	
set to	< setpoint - <u>switching hysteresis</u> 2	< setpoint + <u>switching hysteresis</u> 2	
C (Closer)	Relay = open	Relay = closed	
O (Opener)	Relay = closed	Relay = open	

Connection diagrams

ESD protection advice

The devices contain components, which can be damaged by the effects of electrical fields or by charge equalisation when touched.

The following protective measures must be taken when the housing of the device is to be opened for connection:

- Before opening the housing, ensure electrical potential equalisation between you and your environment.
- Pay particular attention to ensure that this potential equalisation is maintained while you are working with the opened housing.

Installation instructions

Position	The installation site of the remote probe should be chosen such that a representative measurement of air humidity can be guaranteed. Avoid areas in the vicinity of radia tors, doors and exterior walls, as well as direct sunlight.	
	Do not position the sensor where ingress of water could occur.	
	IP65 protection is - only ensured with PTFE sintered filter ZE05 with O-Ring - only ensured when the probe is plugged, see "Probe pluggable" on page 4.	
	We recommend that you lay the connection lines in a loop so that any water that may be present can run off.	
Operating temperature	Please note the maximum permissible ambient temperature for probe and housing when installing the sensor. When firmly connected the standard cable must not be exposed to an increased ambient temperature $> +80^{\circ}$ C.	
Connection to surface-mounted and concealed cables	When connecting to a concealed cable, the knock-out part of the housing floor should be broken out to allow the cable to pass through. When connecting to a surface-mounted cable, the separators at the hollowed-out points in the side of the housing can be broken out.	
Connection	The electrical connection must be carried out by properly qualified personnel only.	
	The housing contains sensitive electrical components. When opening the housing, make sure you comply with the electrostatic discharge precautions.	
	Lines to and from the sensor and the sensor cable must not be installed parallel to strong electromagnetical fields.	
	The installation site should be chosen such that a representative measurement of air humidity can be guaranteed	

User instructions

Cleaning of filters and protective baskets	If necessary, soiled filters and protective baskets can carefully be unscrewed and rinsed. Bear in mind the sensors will not measure accurately again until filters are completely dry.
Damaging influences	Depending on their type and concentration, aggressive media containing solvents can cause incorrect reasings or cause the sensor to fail. Substances deposited on the sensor element (e. g. resin aerosols, paint aerosols, smoke deposits etc.) are harmful as they eventually form a water-repellent film.

This information is based on current knowledge and is intended to provide details of our products and their possible applications. It does not, therefore, act as a guarantee of specific properties of the products described or of their suitability for a particular application. It is our experience that the equipment may be used across a broad spectrum of applications under the most varied conditions and loads. We cannot appraise every individual case. Purchasers and/or users are responsible for checking the equipment for suitability for any particular application. Any existing industrial rights of protection must be observed. The quality of our products is guaranteed under our General Conditions of Sale. Data sheet eStat20-DUO. Issue March 2017. Subject to modifications.

Humidity sensors - TFG80... and combined Humidity-temperature sensors - TFG80... with Polyga[®] humidity measuring element for the measurement of relative air humidity and temperature - for rooms and air channels.

Model overview

passive sensors	
FG80H	Humidity Sensor
	with resistance output up to 10k ohms
TFG80H	Humidity-temperature Sensor
	with resistance output up to 10k ohms
active sensors	
FG80J	Humidity Sensor
	0(4)20mA or 010V DC for U=1530V DC
TFG80J	Humidity-temperature Sensor
	each 0(4)20mA or 010V DC for U=1530V DC
FG80AC	Humidity Sensor
	each 0(4)20mA or 010V DC for U=24V AC
TFG80AC	Humidity-temperature Sensor
	each 0(4)20mA or 010V DC for U=24V AC

Description of the sensor

The Polyga[®] humidity measuring element consists of several synthetic fabric bands each with 90 individual fibres with a diameter of 3 µm each. In their untreated state, the synthetic fibres are not hygroscopic - their hygroscopic properties are acquired by means of a special process which allows the synthetic fibres to absorb moisture. The molecular structure of the individual fibres is arranged lengthways. When water is absorbed, the molecular chains alter, the outward result being a change in length. A loss of water has a converse effect on the fibre. If the fibre is in equilibrium with the air humidity, there is neither absorption nor a loss of water. The length at this point serves as a gauge for the relative humidity.

If the measuring element is exposed to an air humidity of 100%rh, a film of water forms on the surface of the element (dew point). The physical effect is one as if the measuring element had been immersed in water. The measuring element is saturated. An ideal fixed point is thus attained for adjusting or controlling the sensors. The measuring element is waterresistant. Once administered to the Galltec measuring element, the hygroscopic properties remain stable, the sensitivity remaining until it becomes destroyed by extraneous influences. Regeneration as with fine-measuring elements is not necessary, but does not cause any harm.

Design of the sensor

The expanding action (predominantly lengthways) of the fibres is picked up by means of an electronic sensing system and converted by integrated signal preprocessing into standardised signals **0..20mA or 4..20mA or 0...10V**.

The fan-shaped measuring element, which faces outward from the housing, is protected by a perforated sensor tube. The sensors are designed for pressureless systems. The unit should be installed in a location where condensation cannot enter into the housing. A preferred position would be "sensor vertically down" or "sensor horizontal". In these positions, a cover plate with a 0.8 mm diameter hole will prevent water from entering.

The TFG80 range of sensors have built-in temperature sensors (mainly Pt100) for simultaneous measurement of temperature. Temperature readings are converted likewise into standardised signals **0..20mA or 4..20mA or 0..10V**.

This information is based on current knowledge and is intended to provide details of our products and their possible applications. It does not, therefore, act as a guarantee of specific properties of the products described or of their suitability for a particular application. It is our experience that the equipment may be used across a broad spectrum of applications under the most varied conditions and loads. We cannot appraise every individual case. Purchasers and/or users are responsible for checking the equipment for suitability for any particular application. Any existing industrial rights of protection must be observed. The perfect quality of our products is guaranteed under our General Conditions of Sale. Issue : July 2016 FG80_E. Subject to modifications.

Ageing

In order to maintain their long-term stability, it is important that the measuring elements undergo a special ageing process, details of which cannot be given here.

Reaction of the sensor

Due to the law of diffusion, there is a time delay before the fibres are saturated during water absorption. This is a decisive factor when determining the reaction time. Thus, for one individual fibre with a diameter of 3 µm, a short saturation time (several seconds) can be measured. Empirical investigations show that bundled or woven fibres, as are used here in the Galltec sensor, give rise to a longer period prior to saturation. This is because the individual fibres impede each other during water absorption and/or water loss, and the ensuing humidity does not register until later. Measurements have shown that, at a wind speed of 2m / sec. the half-life period is 1.2 mins. This represents an effective period of approx. 30 - 40 mins.

80° C is given as the maximum temperature value. Higher temperatures can only be tolerated for a short period of time. The eventual result is a change in the molecular structure which causes a constant error. The maximum temperature of 80° C only applies, however, if no harmful substances (acids, solvents etc.) are present in the medium.

Half-life period

Thermal behaviour

Technical data Physical data

humidity	measuring range	0 100%rb
numarty	measuring accuracy	
	>40%rh	+2 5%rh
	<40%rh according t	
	working range	
temperature	working range	
tomporataro	measuring accuracy	
measuring medi	um air, pressurele	
-	ient temperature	dee, non aggreeene
p 0	at the housing	-20_60°C
	at the sensor	
medium tempera	ture coefficient0.1%/	
	at average a	
permissible air sp	beed	
	tective gauze (order no. 20	
half-life period at	v=2m/sec	1.2 min
sensor length ; se	ensor material 220n	nm; high-grade steel
fixing	slots in housing base f	or channel mounting
	io. 20.009) cons	
	n sensor vertically down	
	nals for conductor cr	
	l by t	
	electromagnetic compatibil	
	26-1	
DIN EN 6132	26-2-3	issue 07/13
h		
nousing		ABS
protective system	n	IP64

Electrical data for passive sensors

Humidity Output 1	0100 ohm linear 2-wire 0200 ohm linear 2-wire 01000 ohm linear 2-wire
	51005 ohm unlinear 3-wire
	further resistance ranges on request
permissible load	
insulation resistance	10 M ohm

weight ca 0.4 kg

Temperature Output 2 (TFG80H) Pt100 ref. DIN EN 60751 permissible load for air 1m/sec and t=0.1K 2 mA

Electrical data for active sensors

Humidity Output 1 020mA or 010V 4-wire system
or 420mA 2-wire system (only with DC)
Temperature Output 2 020mA or 010V 4-wire system
or 420mA 2-wire system (only with DC)
operating voltage 1530V DC or 24V AC + 10 %
max. load for current output 500 Ohm
min. load resistance for voltage output10k Ohm
internal consumption per range 5 mA, DC version
internal consumption per range10 mA, AC version
temperature measuring range see table
linearity distortion of the temperature output

Type Survey passive Sensors

Туре	Order no.	Measuring rang	ge	Conductor-	Outputs	
		Humidity	Temperature	system	Humidity	Temperature
FG80H	44010300	0 100 % rh	-	2-pin	0 1000 Ω linear	-
	44010400	0 100 % rh	-	2-pin	100 138,5 Ω lin.	-
	44010100	0 100 % rh	-	2-pin	0 100 Ω lin.	-
	44010200	0 100 % rh	-	2-pin	0 200 Ω linear	-
TFG80H	44700350	0 100 % rh	Pt100	2-pin	0 1000 Ω linear	Pt100
	44700450	0 100 % rh	Pt100	2-pin	100 138,5 Ω linear	Pt100
	44700150	0 100 % rh	Pt100	2-pin	0 100 Ω linear	Pt100
	44700250	0 100 % rh	Pt100	2-pin	0 200 Ω linear	Pt100
	44732666	0 100 % rh	NTC	2-pin	0 48 kΩ non-linear	NTC

Further resistance ranges on request.

Type Survey active Sensors

Туре	Order no.	Measuring rang	e	Outputs		Conductor-	Supply-
		Humidity	Temperature	Humidity	Temperature	system	voltage
FG80J FG80AC	44014700	0 100 % rh	-	0 10 V DC	-	3/4-wire	15 30 V DC/ 24 V AC ±10 %
	44014800	0 100 % rh	-	4 20 mA	-	2-wire	15 30 V DC
	44013000	0 100 % rh	-	0 20 mA	-	3/4-wire	15 30 V DC
	44014200	0 100 % rh	-	0 20 mA	-	3/4-wire	24 V AC
TFG80J TFG80AC	44514747	0 100 % rh	0 40°C	0 10 V DC	0 10 V DC	3/4-wire	15 30 V DC/ 24 V AC ±10 %
	44574747	0 100 % rh	-30 60°C	0 10 V DC	0 10 V DC	3/4-wire	15 30 V DC/ 24 V AC ±10 %
	44544747	0 100 % rh	0 100°C	0 10 V DC	0 10 V DC	3/4-wirer	15 30 V DC/ 24 V AC ±10 %
	44624747	0 100 % rh	-10 90°C	0 10 V DC	0 10 V DC	3/4-wire	15 30 V DC/ 24 V AC ±10 %
	44514848	0 100 % rh	0 40°C	4 20 mA	4 20 mA	2-wire	15 30 V DC
	44574848	0 100 % rh	-30 60°C	4 20 mA	4 20 mA	2-wire	15 30 V DC
	44544848	0 100 % rh	0 100°C	4 20 mA	4 20 mA	2-wire	15 30 V DC
	44624848	0 100 % rh	-10 90°C	4 20 mA	4 20 mA	2-wire	15 30 V DC
	44513030	0 100 % rh	0 40°C	0 20 mA	0 20 mA	3/4-wire	15 30 V DC
	44573030	0 100 % rh	-30 60°C	0 20 mA	0 20 mA	3/4-wire	15 30 V DC
	44543030	0 100 % rh	0 100°C	0 20 mA	0 20 mA	3/4-wire	15 30 V DC
	44623030**	0 100 % rh	-10 90°C	0 20 mA	0 20 mA	3/4-wire	15 30 V DC
	44514242	0 100 % rh	0 40°C	0 20 mA	0 20 mA	4-wire	24 V AC
	44574242	0 100 % rh	-30 60°C	0 20 mA	0 20 mA	4-wire	24 V AC
	44624242	0 100 % rh	-10 90°C	0 20 mA	0 20 mA	4-wire	24 V AC
	44544242	0 100 % rh	0 100°C	0 20 mA	0 20 mA	4-wire	24 V AC
FG80JPt100	44704750	0 100 % rh	Pt100	0 10 V DC	Pt100	3/4-wire	15 30 V DC/ 24 V AC ±10 %
	44703050	0 100 % rh	Pt100	0 20 mA	Pt100	3/4-wire	15 30 V DC
	44704850	0 100 % rh	Pt100	4 20 mA	Pt100	2-wire	15 30 V DC

** suitable for EDJ regulator

Humidity and tolerance diagram

Connection diagram for passive sensors with resistance output

Connection diagram for active sensor U=15...30V DC

Connection diagram for active sensors U_{B} =24V AC (± 10 %)

15...25 mA causes a voltage drop on the supply lines. If the measuring signal is taken from terminal 4 / terminal 6 to the connecting point at the power supply (three-wire circuit), then an additional measuring error is incurred, dependant upon the circuit length. A 4-wire connection is recommended.

Dimensions diagram

Accessories

Important The air's capacity to absorb water is influenced among other factors by the temperature. This is a physical law (identified in the *hx* diagram of Mollier). The higher the air temperature, the larger the amount of steam that can be absorbed up to saturation point (100%rh). If a sensor is calibrated under varying air temperature conditions, the result is an irregular, unhomogenous measuring medium which automatically gives calibration errors. The table below shows the influence of the air temperature of 20°C and 50%rh and a varying temperature range of only +/-1 °K, this results in a variation in humidity of the measuring medium (air) of +/-3.2%rh.

	10°C	20°C	30°C	50°C
10%rh	+/-0,7%rh	+/-0,6%rh	+/-0,6%rh	+/-0,5%rh
50%rh	+/-3,5%rh	+/-3,2%rh	+/-3,0%rh	+/-2,6%rh
90%rh	+/-6,3%rh	+/-5,7%rh	+/-5,4%rh	+/-4,6%rh

Physical influence of air temperature on air humidity

Maintenance - Instructions for use - Effect of pollutants

Equipment with Galltec sensors is correctly set by the factory at a room temperature of 23°C and 50% rel. humidity, relative to the average air pressure of 430m NN.

If, however, subsequent adjustment should be necessary, the following procedure should be observed.

- Ensure that the ambient humidity and the ambient temperature are constant.
- If possible, use a psychrometer for checking (no checking equipment with capacitive sensors).
- Leave the equipment to be checked for at least 1 hour in a constant checking climate.
- All Galltec sensors are equipped with an adjustment facility. In most cases this is an adjuster screw fixed with screw securing lacquer. After removing the lacquer, the adjuster screw can be moved in the area of ±2.0%rh. Never make a readjustment several times in the same direction; this could have a cumulative effect.

After calibration, the adjuster screw should again be secured.

The measuring element is maintenance-free in pure ambient air. Depending on their type and concentration, aggressive media containing solvents can cause incorrect readings or cause the humidistat to fail. Direct sunlight should be avoided. Substances deposited on the measuring element (e. g. resin aerosols, paint aerosols, smoke deposits etc.) are harmful as they eventually form a water-repellent film. The water-resistant property of the Galltec measuring elements allows cleaning to be carried out in water. Solvents cannot be used for this purpose. A light-duty detergent is recommended, but any residue should always be washed out thoroughly. A special process ensures that Galltec sensors have good long-term stability. Regeneration is not necessary, but is also not harmful.

Calibration

The temperature coefficient as well as the self-heating of the electronic may vary according to the location and the application (especially with sensors where electronic and measuring system are integrated in one housing).

NOTE

Contact with the inner parts of the humidistat nullifies the warranty.

Guide to installation

Interference is often to be encountered during installation. The correct installation procedure can prevent interference to a very large extent. However, some ground rules should be observed.

To avoid interference, suppression should be carried out in accordance with VDE 0875 and VDE 0874 (*VDE* - this is assumed to be the *Vorschriftenwerk Deutscher Elektrotechniker* - regulations governing German electrical engineers). Fundamentally, interference must be removed at its source, where suppressor material is most effective. Interference can, however, also result from electromagnetic fields via signalling lines. The EMV law determines the corresponding protective measures. All Jumo equipment is designed in accordance with European standards EN 61326. In addition, further protective measures must be observed.

Unavoidable sources of interference should be kept at a good distance from the control systems.

Data and signalling lines should not be used in parallel with control, networking and power lines.

For data and signalling lines, shielded cable should be used, and the shielding must be applied to the earth terminal. Ensure that earth circuits and fault currents do not arise as a result of a second earth connection.

For equipment with a network connection, it is recommended that a separate network circuit be used.

During the switch process, electrical power consumers such as switch contactors, magnetic valves etc. produce induction voltages that can cause interference. In the trade there is an abundance of protective and suppressor component parts that are most effective when applied directly to the source of the trouble. A suitable suppressor has the added advantage that components such as relays, microswitches etc. have a longer service life.

Further difficulties during installation can arise if signalling lines are joined together with common lines. It is essential to check whether this is permissible. Interference is particularly likely when installing using equipment of different makes. Here, too, the trade offers isolating amplifiers that overcome the problem.

Humidity Sensor type FG120

and combined

Humidity-Temperature Sensor type TFG120

with Polyga[®] humidity measuring element for the measurement of relative air humidity and temperature for rooms

Type overview

passive sensors FG120

TFG120

Humidity Sensor with resistance output up to 10kOhms Humidity-temperature Sensor with resistance output up to 10kOhms

Description of the sensor :

The Polyga® humidity measuring element consists of several synthetic fabric bands each with 90 individual fibres with a diameter of 3 µm each. In their untreated state, the synthetic fibres are not hygroscopic - their hygroscopic properties are acquired by means of a special process which allows the synthetic fibres to absorb moisture. The molecular structure of the individual fibres is arranged lengthways. When water is absorbed, the molecular chains alter, the outward result being a change in length. A loss of water has a converse effect on the fibre. If the fibre is in equilibrium with the air humidity, there is neither absorption nor a loss of water. The length at this point serves as a gauge for the relative humidity.

If the measuring element is exposed to an air humidity of 100%rh, a film of water forms on the surface of the element (dew point). The physical effect is one as if the measuring element had been immersed in water. The measuring element is saturated. An ideal fixed point is thus attained for adjusting or controlling the sensors. The measuring element is waterresistant. Once administered to the Galltec measuring element, the hygroscopic properties remain stable, the sensitivity remaining until it becomes destroyed by extraneous influences. Regeneration as with fine-measuring elements is not necessary, but does not cause any harm.

Design of the sensor

The expanding action (predominantly lengthways) of the fibres is picked up by means of an electronic sensing system and converted by a potentiometer into a resistance signal. The fan-shaped measuring element is protected in the housing. The sensors are designed for pressureless systems. The unit should be installed in a location where condensation cannot enter into the housing. The mounting position is optional, preferably with ventilation slots at right angles to direction of airflow.

The TFG120 sensors have built-in temperature sensors (mainly Pt100) for simultaneous measurement of temperature.

FG120... TFG120...

Mounting instructions

The room sensor should be mounted on a vertical wall about 1.5m above the floor. Ensure that the housing can not be deformed because of rough walls. Do not fit above radiators, near windows or doors, on areas exposed to intense vibration or direct sunlight, exterior walls or chimneys. Under no circumstances must the sensors be mounted into a wall or niche. The sensors should be protected from dripping water or splashes.

Ensure that no external air can flow into the interior of the housing via the concealed cable lead. Do not use a silicon sealing compound to seal the cable lead. The sensors should be mounted such that air in the room can flow upwards unimpeded through the ventilation slots in the housing cover.

Ageing

In order to maintain their long-term stability, it is important that the measuring elements undergo a special ageing process, details of which cannot be given here.

This information is based on current knowledge and is intended to provide details of our products and their possible applications. It does not, therefore, act as a guarantee of specific properties of the products described or of their suitability for a particular application. It is our experience that the equipment may be used across a broad spectrum of applications under the most varied conditions and loads. We cannot appraise every individual case. Purchasers and/or users are responsible for checking the equipment for suitability for any particular application. Any existing industrial rights of protection must be observed. The perfect quality of our products is guaranteed under our General Conditions of Sale. Issue : January 2011 FG120_E. Subject to modifications.

Reaction of the sensor

Due to the law of diffusion, there is a time delay before the fibres are saturated during water absorption. This is a decisive factor when determining the reaction time. Thus, for one individual fibre with a diameter of 3 μ m, a short saturation time (several seconds) can be measured. Empirical investigations show that bundled or woven fibres, as are used here in the Galltec sensor, give rise to a longer period prior to saturation. This is because the individual fibres impede each other during water absorption and/or water loss, and the ensuing humidity does not register until later. Measurements have shown that, at a wind speed of 2m / sec. the half-life period is 1.2 mins. This represents an effective period of approx. 30 - 40 mins.

Half-life period

Transient response of the measuring element between 20 and 100%rh

Thermal behaviour

50° C is given as the maximum temperature value. Higher temperatures can only be tolerated for a short period of time. The eventual result is a change in the molecular structure which causes a constant error. The maximum temperature of 50° C only applies, however, if no harmful substances (acids, solvents etc.) are present in the medium.

The temperature coefficient as well as the self-heating may vary according to the location and the application (especially with sensors where electronic and measuring system are integrated in one housing).

Technical Data

Physical data

humidity	measuring range	0100%rh
-	measuring accura	
	>40%rh	
	<40%rh	according to tolerance diagram
	working range	35100%rh
temperature	e measuring accurac	≿y+/-0.5°C
		10+60°C
		pressureless, non-aggressive
		050°C
		0.1%/K at 20°C and 50%rh
adjustment	at	average air pressure 430m NN
permissible ai	r speed	15m/sec
half-life period	l at v=2m/sec	1.2 min
		slots in housing base
mounting pos		preferably with ventilation slots
		ngles to direction of airflow
connecting te	rminals for co	nductor cross sections 0.5mm ²
cable connect	ion	by flush device box
		to EN 50 081-2, to EN 50 081-2
housing		impact resistant plastic, light
grey		
		IP20
weight		approx. 0.2 kg

Electrical data

Humidity Output 1	0100 ohms linear 2-wire
	0200 ohms linear 2-wire
	001000 ohms linear 2-wire
	100138.5 ohms linear 2-wire
	51005 ohms unlinear 3-wire
	further resistance ranges on request
permissible load	1.0 watt
max. voltage	
insulation resistance	

Overview of passive sensors

Туре	Hu	midity	Temp	erature	power	wire-	ltem no.
	measuring range 1	output 1	measuring range 2	output 2	- supply	system	
FG120	0100%rh 0100%rh 0100%rh 0100%rh 0100%rh 0100%rh	0100 Ohm 0200 Ohm 01000 Ohm 100138,5 Ohm 503050 Ohm 51005 Ohm			max 42V max 42V max 42V max 42V max 42V max 42V	2wire 2wire 2wire 2wire 3wire 3wire	45010100 45010200 45010300 45010400 45010500 45010600
TFG120	0100%rh 0100%rh 0100%rh 0100%rh 0100%rh	0100 Ohm 0200 Ohm 01000 Ohm 100138,5 Ohm 51005 Ohm	+5+50°C +5+50°C +5+50°C +5+50°C +5+50°C	Pt100 Pt100 Pt100 Pt100 Pt100	max 42V max 42V max 42V max 42V max 42V	2wire 2wire 2wire 2wire 3wire	45700150 45700250 45700350 45700450 45700650

Humidity and tolerance diagram

Connection diagram for passive sensors with resistance output

Dimensions diagram

000

Description of the sensors

The sensors FK80J (humidity only) / TFK80J (humidity and temperature) measure the air humidity by means of a humidiy-dependant condenser. The capacitive humidity measuring element, produced using thinfilm technology, consists of a base plate, on which the electrodes are housed and a hygroscopic polymer layer avove it. The hygroscopic polymer layer absorbs water molecules from the medium to be measured (air) or releases them, thereby altering the capacity of the condenser. In a tandem-arranged electronic device, the change in capacity is processed via integrated signal preprocessing into signals–0..20mA or 0..10VDC or 4..20mA.

The measuring element is protected by a protective guard. The sensors are designed for pressureless systems - the measuring medium is non-corrosive air.

The TFK80J sensors also contain a semi-conductor temperature sensor for simultaneous temperature measurement. Its measured values are likewise converted into standardised signals 0..20mA or 0..10VDC or 4..20mA

The temperature coefficient as well as the self-heating of the electronic may vary according to the location and the application (especially with sensors where electronic and measuring system are integrated in one housing.

Maintenance - Application instructions - Influence of dirt

In a clean environment, the measuring element is maintenance-free. Depending on their type and concentration, aggressive media containing solvents can cause incorrect readings or cause the sensor to fail. Direct sunlight should be avoided. Substances deposited on the sensor element (e. g. resin aerosols, paint aerosols, smoke deposits etc.) are harmful as they eventually form a water-repellent film (this applies to all humidity sensors with hygroscopic measuring elements).

Please consult "*application instructions for the sensing elements*" (product info sheet no. A 1) or check with the manufacturer for further information which you need to bear in mind when using humidity sensors with capacitive sensing elements.

Humidity Sensor FK80J and

Humidity-Temperature Sensor TFK80J

with capacitive measuring element with current or voltage output, **0...20mA / 0...10VDC or 4...20mA** to determine relative air humidity and temperature, duct version

Technical Data

measuring range humidity0.100%rh
measuring element capacitive FE09
accuracy at 23°C (73,4°F) ±2.0%rh (4060%rh)
at 23°C (73,4°F) ±2.5%rh (otherwise)
includes linearity and repeatability
influence of temperature < 0.15%rh per K
working range595%rh
measuring mediumair, pressureless, non-aggressive
Response time (at calm air) < 20 s
output humidity010V or 020mA (4wire)
or 420mA (2wire)
measuring range temperature
measuring element
accuracy at 010V ±0.2 K ±0.36 °F
at (0)420mA ±0.3 K ±0.54 °F
working range30+80°C (-22176°F)
output temperature010V or 020mA (4wire)
or 420mA (2wire)
Other temperature outputs
NTC; PTC; KTY; LMx35; Pt100; Pt1000; Ni1000; AD592; LM34;
BALKO $1k\Omega$; SILICON $2k\Omega$;
SEMICONDUCTOR 559 mVDC @23°C (75°F)
Thermistors @ 25°C (77°F) 1,8k Ω ; 2,252k Ω ; 3k Ω ; 5k Ω ; 10k Ω ;
1,8kΩ (Type II; III, CSI); 20kΩ; 100kΩ
power supply 1530V DC/24VAC±10%
electromagnetic compatibility EMC
electromagnetic compatibility EMC resistance to interference EN 50 082-2
resistance to interference EN 50 082-2
resistance to interference EN 50 082-2 interference emission EN 50 081-2
resistance to interference
resistance to interference
$\begin{array}{c} \mbox{resistance to interference} & \mbox{EN 50 082-2} \\ \mbox{interference emission} & \mbox{EN 50 081-2} \\ \mbox{max. load} & & \mbox{R}_L(\Omega) = & \mbox{supply - 10 VDC} \\ \mbox{(current output only)} & \mbox{min load (voltage output only)} & \mbox{10 k}\Omega \end{array}$
$\begin{array}{c} \mbox{resistance to interference} & \mbox{EN 50 082-2} \\ \mbox{interference emission} & \mbox{EN 50 081-2} \\ \mbox{max. load} & \mbox{min load} & \mbox{min load (voltage output only)} & \mbox{R}_L(\Omega) = & \mbox{supply - 10 VDC} \\ \mbox{0.02 amps} & \mbox{min load} & \mbox{voltage output only)} & \mbox{10 k}\Omega \\ \mbox{power consumption} & \mbox{-5 mA} \end{array}$
resistance to interferenceEN 50 082-2interference emissionEN 50 081-2max. loadRL(Ω) = $\frac{\text{supply} - 10 \text{ VDC}}{0.02 \text{ amps}}$ min load (voltage output only)10 kΩpower consumption< 5 mA
resistance to interferenceEN 50 082-2interference emissionEN 50 081-2max. loadRL(Ω) = $\frac{\text{supply} - 10 \text{ VDC}}{0.02 \text{ amps}}$ min load (voltage output only)10 kΩpower consumption< 5 mA
resistance to interferenceEN 50 082-2interference emissionEN 50 081-2max. loadRL(Ω) = $\frac{\text{supply} - 10 \text{ VDC}}{0.02 \text{ amps}}$ min load (voltage output only)10 kΩpower consumption< 5 mA
$\begin{array}{c} \mbox{resistance to interference} & \mbox{EN 50 082-2} \\ \mbox{interference emission} & \mbox{EN 50 081-2} \\ \mbox{max. load} & \mbox{EN 50 081-2} \\ \mbox{max. load} & \mbox{Interference emission} \\ \mbox{(current output only)} & \mbox{R}_L(\Omega) = & \mbox{supply - 10 VDC} \\ \mbox{0.02 amps} \\ \mbox{min load (voltage output only)} & \mbox{10 k}\Omega \\ \mbox{power consumption} & \mbox{-10 k}\Omega^\circ C (-40176^\circ F) \\ \mbox{at the housing} & \mbox{-10+60^\circ C (14140^\circ F)} \\ \mbox{admitted air speed} & \mbox{-15 m/sec (50 ft/sec)} \end{array}$
$\begin{array}{c} \mbox{resistance to interference} & \mbox{EN 50 082-2} \\ \mbox{interference emission} & \mbox{EN 50 081-2} \\ \mbox{max. load} & \mbox{EN 50 081-2} \\ \mbox{max. load} & \mbox{min load} (\mbox{voltage output only}) & \mbox{R}_L(\Omega) = & \mbox{supply} - 10 \mbox{VDC} \\ \mbox{output only}) & \mbox{10 k}\Omega \\ \mbox{power consumption} & \mbox{10 k}\Omega \\ \mbox{power consumption} & \mbox{-40+80^{\circ}C (-40176^{\circ}F)} \\ \mbox{at the housing} & \mbox{-10+60^{\circ}C (14140^{\circ}F)} \\ \mbox{admitted air speed} & \mbox{min mum air speed (across the sensor):} \end{array}$
$\label{eq:resistance to interference} EN 50 082-2 \\ interference emission EN 50 081-2 \\ max. load EN 50 081-2 \\ max. load EN 50 081-2 \\ max. load EN 50 081-2 \\ \hline max. load I 0 kD C \\ \hline max. load e \ max. load \ max. load \ max. load e \ max. load \ $
$\label{eq:resistance to interference} EN 50 082-2 \\ interference emission EN 50 081-2 \\ max. load EN 50 081-2 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\begin{array}{c} \mbox{resistance to interference} & \mbox{EN 50 082-2} \\ \mbox{interference emission} & \mbox{EN 50 081-2} \\ \mbox{max. load} & \mbox{EN 50 081-2} \\ \mbox{max. load} & \mbox{EN 50 081-2} \\ \mbox{min load} (voltage output only) & \mbox{R}_L(\Omega) = & \mbox{supply} - 10 \mbox{VDC} \\ \mbox{0.02 amps} \\ \mbox{min load (voltage output only)} & \mbox{10 k}\Omega \\ \mbox{power consumption} & \mbox{-40} & \mbox{+80°C (-40} & \mbox{176°F}) \\ \mbox{at the housing} & \mbox{-10} & \mbox{+80°C (14} & \mbox{140°F}) \\ \mbox{admitted air speed} & \mbox{15 m/sec (50 ft/sec)} \\ \mbox{Minimum air speed (across the sensor):} \\ \mbox{output 0} & \mbox{-10V}, 2x \mbox{0} & \mbox{-10V} & \mbox{-21m/s} \\ \mbox{2x 4} & \mbox{-20mA} & \mbox{-20mA} & \mbox{-20mA} & \mbox{-20mA} \\ \end{tabular}$
resistance to interferenceEN 50 082-2interference emissionEN 50 081-2max. loadmax. loadSupply - 10 VDC(current output only)RL(Ω) = supply - 10 VDC(current output only)10 kΩpower consumption< 5 mA
resistance to interferenceEN 50 082-2interference emissionEN 50 081-2max. loadmax. loadSupply - 10 VDC(current output only)RL(Ω) = supply - 10 VDC(current output only)10 kΩpower consumption< 5 mA
$\label{eq:resistance to interference} EN 50 082-2 \\ interference emission EN 50 081-2 \\ max. load EN 50 081-2 \\ load 12 \\ max. load enterpresent the load enterpresent t$
$\label{eq:resistance to interference} EN 50 082-2 \\ interference emission EN 50 081-2 \\ max. load entermodel entermodel EN 50 081-2 \\ max. load entermodel entermodel$
$\begin{array}{c} \mbox{resistance to interference} & \mbox{EN 50 082-2} \\ \mbox{interference emission} & \mbox{EN 50 081-2} \\ \mbox{max. load} & \mbox{EN 50 081-2} \\ \mbox{max. load} & \mbox{EN 50 081-2} \\ \mbox{min load} (voltage output only) & \mbox{R}_L(\Omega) = & \mbox{supply} - 10 \mbox{VDC} \\ \mbox{0.02 amps} \\ \mbox{min load (voltage output only)} & \mbox{10 k}\Omega \\ \mbox{power consumption} & \mbox{-5 mA} \\ \mbox{permissible ambient temperature} & \mbox{-40+80°C (-40176°F)} \\ \mbox{at the housing} & \mbox{-10+60°C (14140°F)} \\ \mbox{admitted air speed} & \mbox{15 m/sec (50 ft/sec)} \\ \mbox{Minimum air speed (across the sensor):} \\ \mbox{output 010V, 2x 01V} & \mbox{-21.5m/s} \\ \mbox{2x 420mA} & \mbox{-21.5m/s} \\ \mbox{probe length} & \mbox{-200mm (7,87")} \\ \mbox{probe material} & \mbox{aluminium, electrolytically oxidized} \\ \mbox{for channel mounting} & \mbox{perforation in the case} \\ \mbox{mounting position} & \mbox{as you like} \\ \end{tabular}$
resistance to interferenceEN 50 082-2interference emissionEN 50 081-2max. loadEN 50 081-2max. loadRL(Ω) = supply - 10 VDC(current output only)N Colspan="2">RL(Ω) = Supply - 10 VDC(current output only)N Colspan="2">N Colspan="2">N Colspan="2">Colspan="2">Colspan="2">Colspan="2">EN 50 081-2max. loadSupply - 10 VDC(current output only)N Colspan="2">N Colspan="2">N Colspan="2">N Colspan="2">Colspan="2">Colspan="2">Supply - 10 VDC(current output only)N Colspan="2">N Colspan="2">N Colspan="2">N Colspan="2">Colspan="2">Colspan="2">Supply - 10 VDC(current output only)N Colspan="2">N Colspan="2">N Colspan="2">N Colspan="2">N Colspan="2">N Colspan="2">Supply - 10 VDC(current output only)N Colspan="2">N Colspan="2"N Colspan="2"Nuturent colspan="2"Nuturent colspan="2"Nuturent cols
resistance to interferenceEN 50 082-2interference emissionEN 50 081-2max. loadEN 50 081-2max. loadRL(Ω) = supply - 10 VDC(current output only)N Colspan="2">N Colspan="2">Supply - 10 VDC(current output only)N Colspan="2">N Colspan="2"N Co
resistance to interferenceEN 50 082-2interference emissionEN 50 081-2max. loadEN 50 081-2max. loadRL(Ω) = $\frac{\text{supply} - 10 \text{ VDC}}{0.02 \text{ amps}}$ (current output only)N $R_L(\Omega) = \frac{\text{supply} - 10 \text{ VDC}}{0.02 \text{ amps}}$ min load (voltage output only)10 kΩpower consumption< 5 mA
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$

¹⁾ please observe working range

This information is based on current knowledge and is intended to provide details of our products and their possible applications. It does not, therefore, act as a guarantee of specific properties of the products described or of their suitability for a particular application. It is our experience that the equipment may be used across a broad spectrum of applications under the most varied conditions and loads. We cannot appraise every individual case. Purchasers and/or users are responsible for checking the equipment for suitability for any particular application. Any existing industrial rights of protection must be observed. The perfect quality of our products is guaranteed under our General Conditions of Sale. Issue : November 2014 FK80_E. Subject to modifications.

Overview of capacitive sensors power supply 15...30V DC (24V AC ±10 %)

re 58014700 re 58014800
re 58014800
re 58013000
re 58574747
re 58544747
re 58524747
re 58624747
re 58524848
re 58574848
re 58264848
re 58624848
re 58544848
re 58523030
re 58623030
re 58573030
re 58543030
re 58703050
re 58704650
re 58704850

Overview of capacitive sensors power supply 24V AC ±10 %

FK80J	0100%rh	010V DC			1530V DC / 24 V AC	3/4 wire	58014700
AC-version	0100%rh	020 mA			24 V AC	4 wire	58014200
	0100%rh	010V DC	0+50°C	010V DC	1530V DC / 24 V AC	3/4 wire	58524747
TFK80J	0100%rh	010V DC	-30+60°C	010V DC	1530V DC / 24 V AC	3/4 wire	58574747
	0100%rh	010V DC	-10+90°C	010V DC	1530V DC / 24 V AC	3/4 wire	58624747
	0100%rh	010V DC	0100°C*	010V DC	1530V DC / 24 V AC	3/4 wire	58544747
	0100%rh	020mA	0+50°C	020mA	24 V AC	4 wire	58524242
	0100%rh	020mA	-30+60°C	020mA	24 V AC	4 wire	58574242
-	0100%rh	020mA	-10+90°C	020mA	24 V AC	4 wire	58624242
	0100%rh	020mA	0100°C*	020mA	24 V AC	4 wire	58544242

* observe max. temperature range

** suitable for EDJ controller

Connection diagram

Working range

Cleaning instruction

The surface of the measuring element must not be touched.

To clean the measuring element, its surface can be rinsed, however should only be moistened with water drops; immersing into distilled water is possible

Correct measuring values will be regained as soon as the measuring element has been dried completely. Dry dust can simply be blown off the measuring element. Don't use compressed air for this purpose.

Contact with the inner parts nullifies the guarantee.

Accessories

Ventilated sensor tube for improved air flow

Console for wall mounting item no. 20.009

Checking calibration

It is possible to use sensor checks in order to test the humidity sensors from time to time for accuracy. The physical process is described in detail in **DIN 50 008**, **IEC Publikation 260**, **ISO/R 483-1966**. In the air space above an aqueous saturated saline solutaion an ambient climate is formed whose air humidity is dependent on the water vapour pressure of the saline solution.

The Galltec+Mela sensor checks are designed so that a foil permeable to vapour is positioned between the saline solution and the air space (space in which the measuring element is located). This makes carrying out the sensor checks a very straightforward procedure as follows:

Remove the protective cap of the sensor check while opening the PG screw and introduce the sensor duct up to the mark. Tie the sensor in the PG screw. Please make sure that the sensor check is well tight and air-sealed while caring out your measurement. If you are using a sensor with a "Polyga" measuring element, ensure particularly that the lid of the sensor is well tight and that the cable duct is well sealed.

After a certain period of time, a constant humidity builds up between the saline solution and the air space in which the humidity measuring element is located. Depending on the type of saline solution and the sensor check, humidity values range from 33%RH to 98%RH. The standard values of the Galltec+Mela sensor checks are 33%RH, 55%RH, 76%RH and 98%RH. We

Sensor check	°C	5	10	15	20	25	30
33%rh	%rh	34	34	34	33	33	33
crew the check firmly onto ept constant. Take humidity	the humidity s				re that the	temperati	ure is
Sensor check	°C	5	10	15	20	25	30
		-					
55%rh		58	57	56	55	53	52
55% crb Screw the check firmly onto s kept constant. Take humin	%rh	58 Sensor. W	ait for 2 h	ours. Ensu			
Screw the check firmly onto	%rh	58 Sensor. W	ait for 2 h	ours. Ensu			

recommend a compensation period of about 2 hours. Please ensure that there are no major fluctuations in temperature during this period. Temperature fluctuations severely disturb the equilibrium.

The equilibrium moisture content is dependent on the temperature - according to the type of salt. The corresponding values are given in a correction table located on the sesnsor check.

It is important that you replace the sealing cap of the sensor check after use, otherwise the water of the saline solution will evaporate and the check will become unusable.

Guide to installation

Interference is often to be encountered during installation. The correct installation procedure can prevent interference to a very large extent. However, some ground rules should be observed.

To avoid interference, suppression should be carried out in accordance with VDE 0875 and VDE 0874

(*VDE* - this is assumed to be the *Vorschriftenwerk Deutscher Elektrotechniker* - regulations governing German electrical engineers).

Fundamentally, interference must be removed at its source, where suppressor material is most effective. Interference can, however, also result from electromagnetic fields via signalling lines. The EMV law determines the corresponding protective measures. All Galltec+Mela equipment is designed in accordance with European standards EN 50081-2 and EN 50082-2 (for industrial locations). In addition, further protective measures must be observed.

Unavoidable sources of interference should be kept at a good distance from the control systems.

Data and signalling lines should not be used in parallel with control, networking and power lines.

For data and signalling lines, shielded cable should be used, and the shielding must be applied to the earth terminal. Ensure that earth circuits and fault currents do not arise as a result of a second earth connection.

For equipment with a network connection, it is recommended that a separate network circuit is used.

During the switch process, electrical power consumers such as switch contactors, magnetic valves etc. produce induction voltages that can cause interference. In the trade there is an abundance of protective and suppressor component parts that are most effective when applied directly to the source of the trouble. A suitable suppressor has the added advantage that components such as relays, microswitches etc. have a longer service life.

Further difficulties during installation can arise if signalling lines are joined together with common lines. It is essential to check whether this is permissible. Interference is particularly likely when installing using equipment of different makes. Here, too, the trade offers isolating amplifiers that overcome the problem.

FK120J for humidity TFK120J for humidity and temperature

.

Technical Data

measuring range humidity	0100%rh
working range	1095%rh
measuring accuracy	±3.5 %rh
measuring medium air, pressureless, non-corrosi	ve/condence
temperature coefficient 0.05%/K at 20°C a	and 50%rh
adjustment at average air pressure	
half-life period (v=2m/sec) appr	ox. 10 sec
output humidity 020mA or 010V 4-w	ire system
or420mA2-v	viresystem
measuring range temperature	
0+50°C, -1090°C ¹ , -3060°C,	0100°C ¹⁾
measuring accuracy	
working range	10+60°C
output temperature 020mA or 010V 4 w	
or 420mA 2 w	
linearity tolerance	<0.5%
operating voltage 1524V De	C / 24V AC
max. load for current output	
min. ballast resistance for voltage-output	
internal consumption per measuring range (4-wire	
permissible ambient temperature	
permissible air speed	
fixing slots in housing base for wal	
mounting position preferably ventilation slo	•
angles to win	
contact connecting terminals in th connecting terminals	
for conductor cross-sectio	
cable connection for conductor cross-sectio	
EMC tested to EN 50 081-2, Ef	
housing impact resistant plastic	
dimensions 115	
protective system	
weight	
worgine	. ou 0.2 Ng

1) please heed working range

Humidity Sensor FK120J

with capacitive measuring element with current or voltage output, to determine air humidity

Humidity-temperature Sensor TFK120J

with capacitive measuring element with current or voltage output, to determine air humidity and temperature

Description of the sensor

.

The FK120J (humidity only) / TFK120J (humidity and temperature) sensor measures the air humidity by means of a humidity-dependant condenser. The capacitive humidity measuring element, produced using thin-film technology, consists of a base plate, on which the electrodes are housed, and a hygroscopic polymer layer above it. The hygroscopic polymer layer absorbs water molecules from the medium to be measured (air) or releases them, thereby altering the capacity of the condenser. In a tandem-arranged electronic device, the change in capacity is processed via integrated signal preprocessing into standardised signals **0...20mA** or **0...10VDC** or **4...20mA**.

The measuring element is protected in the housing. The sensors are designed for pressureless systems - the measuring medium is non-corrosive air.

The TFK120J sensors also contain a Pt100 resistance for simultaneous temperature measurement. Its measured values are likewise converted into stan-dardised signals **0...20mA** or **0...10VDC** or **4...20mA**.

Maintenance

In a clean environment, the measuring element is maintenance-free. Depending on their type and concentration, aggressive media containing solvents can cause incorrect readings or cause the sensor to fail. Direct sunlight should be avoided. Substances deposited on the sensor element (e. g. resin aerosols, paint aerosols, smoke deposits etc.) are harmful as they eventually form a water-repellent film.

Please consult "*application instructions for the sensing elements*" (product info sheet no. A 1) or check with the manufacturer for further information which you need to bear in mind when using humidity sensors with capacitive sensing elements.

ATTENTION: Contact with the inner parts nullifies the guarantee.

Overview of *capacitive* sensors operating voltage = 15...24V DC and/or 24V AC

FK120J	0100%rh	010V DC			1524V DC 24V AC	3/4 wire	59014700
	0100%rh	420 mA			1524V DC	2 wire	59014800
TEKAOO	0100%rh	020 mA	0+50°C	020 mA	1524V DC	3/4 wire	59523030
TFK120J	0100%rh	010V DC	0+50°C	010V DC	1524V DC 24V AC	3/4 wire	59524747
	0100%rh	420 mA	0+50°C	420 mA	1524V DC	2 wire	59524848
	0100%rh	420 mA	-30+60°C	420 mA	1524V DC	2 wire	59574848
	0100%rh	020 mA	0+50°C	020 mA	24V AC	4 wire	59524242
	0100%rh	020 mA	-30+60°C	020 mA	24V AC	4 wire	59574242
	0100%rh	020 mA	-10+90°C	020 mA	24V AC	4 wire	59624242
	0100%rh	020 mA	0100°C	020 mA	24V AC	4 wire	59544242

* observe max. temperature range

Connection diagram

Dimensions diagram

Mounting instructions

The room sensor should be mounted on a vertical wall about 1.5m above the floor.

Do not fit above radiators, near windows or doors, on areas exposed to intense vibration or direct sunlight, exterior walls or chimneys. Under no circumstances must the sensors be mounted into a wall or niche. The sensors should be protected from dripping water or splashes. Ensure that no air can flow into the interior of the housing via the concealed cable lead. Do not use a silicon sealing compound to seal the cable lead.

The sensors should be mounted such that air in the room can flow upwards unimpeded through the ventilation slots in the housing cover.

The temperature coefficient as well as the self-heating of the electronic may vary according to the location and the application (especially with sensors where electronic and measureing system are integrated in one housing.

Guide to installation

Interference is often to be encountered during installation. The correct installation procedure can prevent interference to a very large extent. However, some ground rules should be observed.

To avoid interference, suppression should be carried out in accordance with VDE 0875 and VDE 0874

(*VDE* - this is assumed to be the *Vorschriftenwerk Deutscher Elektrotechniker* - regulations governing German electrical engineers).

Fundamentally, interference must be removed at its source, where suppressor material is most effective. Interference can, however, also result from electromagnetic fields via signalling lines. The EMV law determines the corresponding protective measures. All Galltec equipment is designed in accordance with European standards EN 50081-2 and EN 50082-2 (for industrial locations). In addition, further protective measures must be observed.

Unavoidable sources of interference should be kept at a good distance from the control systems.

Data and signalling lines should not be used in parallel with control, networking and power lines.

For data and signalling lines, shielded cable should be used, and the shielding must be applied to the earth terminal. Ensure that earth circuits and fault currents do not arise as a result of a second earth connection.

For equipment with a network connection, it is recommended that a separate network circuit be used.

During the switch process, electrical power consumers such as switch contactors, magnetic valves etc. produce induction voltages that can cause interference. In the trade there is an abundance of protective and suppressor component parts that are most effective when applied directly to the source of the trouble. A suitable suppressor has the added advantage that components such as relays, microswitches etc. have a longer service life.

Further difficulties during installation can arise if signalling lines are joined together with common lines. It is essential to check whether this is permissible. Interference is particularly likely when installing using equipment of different makes. Here, too, the trade offers isolating amplifiers that overcome the problem.

Maintenance

The measuring element is maintenance free when the surrounding air is clean. Agents that are corrosive and contain solvents, depending upon the type and concentration of the agent, can result in faulty measurements and cause the measuring element to break down. Substances deposited on the sensor are damaging as they eventually form a water-repellent film (this applies to all humidity sensors with hygroscopic measuring elements). Such substances are resin aerosols, lacquer aerosols, smoke deposits etc. The water-resistant property of the Galltec sensors allows for cleaning using water. Solvents cannot be used for this purpose. A light-duty detergent is recommended. Any detergent residue should, however, always be thoroughly washed out.

A special process ensures that Galltec sensors have good long-term stability. Regeneration is not necessary, but is also not harmful.

ATTENTION: No warranty will be guaranteed when inner parts of the device have been handled.

Humidity module type FM80H

with resistance output to determine relative air humidity, in builtin design.

Humidity-Temperature module type TFM80H

with resistance output to determine relative air humidity and temperature, in built-in design.

Description of the module

The humidity measuring element, produced by Galltec under the name Polyga[®], consists of several synthetic fabric bands each with 90 individual fibres with a diameter of 3 μ m. A special process gives the fibre hygroscopic properties. The measuring element absorbs and desorbs humidity. The swelling effect, which is predominantly in a lengthways direction, is sensed by means of a suitable fine loop resistor. The coil and slide contact of the fine loop resistor consist of a gold wire alloy. Minimum contact resistance and safe contact are guaranteed.

The fan shaped measuring element is protected by a perforated sensor tube. The modules are designed for pressureless systems. Pt100 resistance temperature sensors are mounted in the TFM80H module for simultaneous temperature acquisition. Other temperature measuring systems can be supplied on request.

Technical Data

humidity measuring range
measuring accuracy
>40%rh ±2.5%rh
<40%rh according to tolerance diagram
working range
temperature working range30+80°C
measuring accuracy±0.5°C
measuring mediumair, pressureless, not aggressive permissible ambient temperature
at the case050°C
at the probe40+80°C
medium temp. coefficient
adjustment at average air pressure 430m NN
permissible air speed
with protective gauze (ord.no. 20.014)15m/sec
t _{o5} atv=2m/sec1.2min probe length; probe material
position probe vertically downwards or horizontally
connecting terminal for conductor cross section 0.5mm ²
electromagnetic compatibility EMC
immunity to EN 50 082-2
emission to EN 50 081-2
protective system IP00
weight (approx.)
weight (approx.)0.6 kg humidity output 10.100 ohms linear 2-wire
0200 ohms linear 2-wire
0200 ohms linear 2-wire
001000 ohms linear 2-wire
100138.5 ohms linear 2-wire
51005 ohms nonlinear 3-wire
further resistance ranges on request
permissible load1.0 Watt
max.voltage
insulation resistance
temperature output2 (TFG80H)Pt100 in acc. with DIN EN 60751
permissible load for air 1m/sec and t=0,1K2mA "subject to technical modifications"

Humidity and tolerance diagram

Connection diagram for passive sensors with resistance output

Reaction of the sensor

Due to the law of diffusion, there is a time delay before the fibres are saturated during water absorption. This is a decisive factor when determining the reaction time. Thus, for one individual fibre with a diameter of 3 μ m, a short saturation time (several seconds) can be measured. Empirical investigations show that bundled or woven fibres, as are used here in the Galltec sensor, give rise to a longer period prior to saturation. This is because the individual fibres impede each other during water absorption and/or water loss, and the ensuing humidity does not register until later. Measurements have shown that, at a wind speed of 2m / sec. the half-life period is 1.2 mins. This represents an effective period of approx. 30 - 40 mins.

Half-life period

Transient response of the measuring element between 20 and 100% rh.

Thermal behaviour

The average deviation of temperature behaviour is 4%rh. the sensors are adjustd at 23°C. The following chart shows the temperature behaviour of the Polyga[®] measuring elements.

80° C is given as the maximum temperature value. Higher temperatures can only be tolerated for a short period of time. The eventual result is a change in the molecular structure which causes a constant error. The maximum temperature of 80° C only applies, however, if no harmful substances (acids, solvents etc.) are present in the medium.

Ageing

In order to maintain their long-term stability, it is important that the measuring elements undergo a special ageing process, details of which cannot be given here.

Connection diagram

Product info sheet Hygro-Modul HM80

with one changeover contact, scale range 30...100%rh, IP00

Application

The hygro module HM80 is a humidity-dependent switch that can be fitted in equipment such as hygrostats, humidifiers, dehumidifiers, ventilating fans, driers and many more. The module represents an on-off controller with changeover contact. The switch connection is via a connecting terminal, but can also be supplied ready-made with cable connections. Several versions of different lengths are available as a shaft. Protection of the module is of the IP00 type.

Description of the Hygrostat

The humidity measuring element, produced by Galltec under the name Polyga[®], consists of several synthetic fabric bands each with 90 individual fibres with a diameter of 3µm. A special process gives the fibre hygroscopic properties. The measuring element adsorbs and desorbs humidity. The swelling effect, which is predominantly in a lengthways direction, is carried via a suitable lever system to a microswitch with an extremely small switching path. The measuring element reacts quickly and precisely to the change in air humidity. By adjusting the setpoint value control knob, the lever system is engaged so that when the set air humidity is reached the microswitch is activated.

The fan shaped measuring element is protected by a perforated sensor tube. The hygro module is designed for pressureless systems. The mounting position should be chosen such that condensed water cannot get onto the microswitch.

Technical Data

scale range	
range of operation	
for HM80-2 0+15%rh	
$\begin{array}{c} \text{breaking capacity of the changeover contact} \\ \text{ohmic load } (\cos \phi = 1) \dots 15A \mbox{ AC } 230V \\ \text{inductive load } (\cos \phi = 0,7) \dots 2A \mbox{ AC } 230V \\ \text{direct voltage} \dots 0.25A \mbox{ DC } 230V \\ \text{low voltage} \dots 100 \mbox{ mA, } 125V \mbox{ AC } 25V \mbox{ AC } 230V \\ \text{low voltage} \dots 0.25A \mbox{ DC } 230V \\ \text{low voltage} \dots 0.60^{\circ}C \\ \text{allowable operating temperature} \dots 0.60^{\circ}C \end{array}$	
medium temp. coefficient0.2%/K relative to 20°C and 50%rh adjustment at average air pressure 430 m NN allowable air speed	
applied directives / standards low-voltage directive 2014/35/EU EMC directive 2014/30/EU DIN EN 60730-1:2012-10 DIN EN 60730-2-13:2008-09	
type of protection (external adjusting knob) IP00 measuring element	

Operating instructions for channel hygrostat HM80 and HM80-2

Mounting

- The hygrostats must not come into direct contact with water (e.g. splashed water when cleaning the climatic chamber etc.)
- The mounting location should be chosen so that a representative measurement of the air humidity can be guaranteed, i.e. the humidity readings at the mounting location should correspond to those in the room as far as possible.
- The hygrostat should be exposed to the flow of air.

Operating information:

Note that, with restrictions in the upper range of operation, the possible tolerances (measurement accuracy, switching difference and temperature coefficient) should be observed when adjusting the switch point.

Preferred mounting positions

Maintenance

The measuring element is maintenance-free in pure ambient air. Depending on their type and concentration, aggressive media containing solvents can cause incorrect readings or cause the humidistat to fail. Substances deposited on the measuring element (e.g. resin aerosols, paint aerosols, smoke deposits etc.) are harmful as they eventually form a water-repellent film. The water-resistant property of the Galltec measuring elements allows cleaning to be carried out in water. Solvents cannot be used for this purpose. A light-duty detergent is recommended, but any residue should always be washed out thoroughly.

A special process ensures that Galltec sensors have good long-term stability. Regeneration is not necessary, but is also not harmful.

Contact with the inner parts of the humidistat nullifies the warranty.

Calibration

Equipment with Galltec hygrostats is correctly set by the factory at a room temperature of 23°C and 50% rel. humidity, relative to the average air pressure of 430m NN.

If, however, subsequent adjustment should be necessary, the following procedure should be observed.

- Ensure that the ambient humidity and the ambient temperature are constant.
- If possible, use a psychrometer for checking (no chekking equipment with capacitive sensors).
- Leave the equipment to be checked for at least 1 hour in a constant checking climate.
- The adjuster screw is at the end of the sensor fixed
 with screw securing lacquer. After removing the lacquer, the adjuster screw can be moved. A right-hand rotation means that the measured value goes down, and with a left-hand rotation the measured value goes up. After calibration, the adjuster screw should again be secured.

Note:

Moving the adjuster screw nullifies the guarantee.

Important. The water absorption capacity of the air is influenced, amongst other things, by the temperature. This is a physical law (which can be seen from the hx diagram of Mollier). The higher the air temperature, the greater the volume of water vapour that can absorbed up to saturation point (100%rh). If a hygrostat is now calibrated at fluctuating air temperature, there is an irregular, non-homogeneous measured medium and there are automatically calibration errors. The table below shows the influence of the air temperature on air humidity. If, for example, calibration occurs at an air temperature of 20 °C and 50%rh, and at a temperature fluctuation of just ± 1 °K, then there will be a humidity fluctuation in the measured medium (air) of $\pm 3.2\%$ rh.

	10°C	20°C	30°C	50°C
10%rh	+/-0,7%rh	+/-0,6%rh	+/-0,6%rh	+/-0,5%rh
50%rh	+/-3,5%rh	+/-3,2%rh	+/-3,0%rh	+/-2,6%rh
90%rh	+/-6,3%rh	+/-5,7%rh	+/-5,4%rh	+/-4,6%rh

Maintenance instructions

for humidity measuring equipment with Polyga[®]humidity measuring element.

Impact of dirt

The measuring element is maintenance-free in pure ambient air. Depending on their type and concentration, aggressive media containing solvents can cause incorrect readings or cause the humidistat to fail. Hygroscopic humidity measuring elements - and these include particularly the capacitive measuring elements, resite measuring elements and fibre measuring elements (Polyga) - are sensitive if a water-repellent film forms on the surface of the elements. Such sensors and hygrostats cannot be used for example during wood drying as, depending on the type of wood to be dried, resin aerosols in the surrounding air are deposited on the measuring element. The same applies to lacquer drying equipment where there are paint aerosols in the surrounding air.

The water-repellent property of the Galltec[®] humidity measuring element allows cleaning to be carried out in water. An important benefit when the sensors are used in extreme atmospheres.

Cleaning instruction

for humidity sensors, hygrostats in channel design as well as all shaft equipment, FG80.., TFG80.., HG80, HG80-2, HM80 and HM80-2.

The humidity measuring equipment is designed with a perforated sensor tube. The humidity and temperature measuring elements are in the interior of the sensor tube. The humidity measuring element is arranged axially and the temperature measuring element is seated sideways at the top or bottom between the perforation holes.

Measuring equipment with Pt100 glass measuring resistors can be immersed in water. Other temperature sensors, in particular semi-conductor sensors or customer-specific temperature sensors should not come into contact with water. Enquire if in doubt.

The measuring elements are designed for use in pressureless air (gases). The measurement accuracy depends on the degree of pollution of the element. The humidity measuring element, in particular, loses its hygroscopic properties if the surface is covererd with grease, soot, smoke deposits, paint, resinous substances etc. By cleaning the elements, their function can be reproduced, but only if no damage is caused by acids, alkaline solutions or other aggressive substances.

Cleaning process

1. Disconnect the device from the power supply!

2. Dip the sensor tube into a receptacle containing clean water (20°C) and, with a gentle rotating motion, disperse the dirt deposits. If the dirt contains grease deposits, it is recommended that a mild detergent be added to the water.

Do not brush or treat with any other cleaning utensils. Only the sensor tube should be immersed - not the housing. The sensor tube is open to the housing interior (0.8mm hole)

3. As mild detergents are known to contain chemical substances, rinse carefully after cleaning. Cleaning residue will impair the measured result.

4. Air drying. Where a measuring element is moistened with water, the device indicates 100% relative humidity. If necessary, it is possible to carry out sensitive recalibration at the adjusting spindle at the end of the sensor. This should only be done where there are large deviations. Slight movement of the adjusting spindle of a wet element causes the measured value in the dry area to be badly out. Here, there is an intensifying effect of the linearisation (factor 6). Indications of 98..100% relative humidity at the wet element are adequate.

The accuracy in the dry area must be determined under normal climatic conditions.

The measuring element must not be dried using warm or hot air (hair dryer).

Cleaning should be carried out for no longer than some seconds.

Installation advises

On installation ensure that there is sufficient overcurrent protection (e. g. fuse). Also a separation device (e. g. plug or switch) has to be installed.

Further detailes informationen you will find in "HUMIDITY SENSOR IN ACCORDANCE WITH THE ABSORPTION PRINCIPLE"

Product info sheet Hygro-Modul HM120

with one changeover contact, scale range 30...100%rh, IP00

Application

The hygro module **HM120** is a humidity-dependent switch that can be fitted in equipment such as hygrostats, humidifiers, dehumidifiers, ventilating fans, driers and many more. The module represents an on-off controller with changeover contact. The switch connection is via a connecting terminal, but can also be supplied ready-made with cable connections. Several versions of different lengths are available as a shaft. Protection of the module is of the IP00 type.

Technical Data

measuring element Polyga [®] -measuring element,
water resistent
control range 4090%rh
breaking capacity max. 250VAC and 0,1 5A ohmic load for dehumidifying
0,1 2A ohmic load for humidifying 0.1 1A for inductive load (power factor >0.8) lifetime
Please observe the notes on voltage.
optional microswitch with gold contact breaking capacity max. 48 VAC and 1100 mA
allowable operating temperature 060°C allowable storage temperature
ref. to 23 °C \leq +/- 0.2 % r.h. / K typ. response time t ₅₀ at v=2m/s 0nly with plastic screws M3 contacting connecting terminals
applied directives / standards low-voltage directive 2014/35/EU EMC directive 2014/30/EU DIN EN 60730-1:2012-10 DIN EN 60730-2-13:2008-09
type of protection IP00 Abmessungen see technical drawing height depends on adjusting shaft, up to approx. 33 mm weight about 25 grams

Description of the Hygro Modul

The humidity measuring element, produced by Galltec under the name Polyga[®], consists of several synthetic fabric bands each with 90 individual fibres with a diameter of 3µm. A special process gives the fibre hygroscopic properties. The measuring element adsorbs and desorbs humidity. The swelling effect, which is predominantly in a lengthways direction, is carried via a suitable lever system to a microswitch with an extremely small switching path. The measuring element reacts quickly and precisely to the change in air humidity. By adjusting the setpoint value control knob, the lever system is engaged so that when the set air humidity is reached the microswitch is activated.

The fan shaped measuring element should be protected from dust, dirt and water. The hygro module is designed for pressure-less systems.

Notes on voltage

The measurement location of the humidity controller should be selected such that there is no build-up of condensate on or in the device. This applies particularly for operation with a voltage higher than 48V. If the voltage is higher, there is a risk of voltage arcing in the event of water condensation on the microswitch or connecting terminals which might destroy the controller. In the case of voltage below 48V, the humidity controller can be used up to 100%rh.

1-point-adjustment at 48 % r.h. / 23 °C Long-term drift: ≤ ±1%r.h. p.a.

Typical switching differential with typical tolerance

Setpoint value humidity	Switching differential	Tolerance
50 % r.h.	5 % r.h.	+/- 1,5 % r.h.
60 % r.h.	4 % r.h.	+/- 1,5 % r.h.
70 % r.h.	4 % r.h.	+/- 1,5 % r.h.
80 % r.h.	3 % r.h.	+/- 1 % r.h.
90 % r.h.	3 % r.h.	+/- 1 % r.h.

Cleaning instruction

1. Disconnect the device from the power supply

2. Remove the cover. Clean the cord shaped measuring element using a soft brush and clean water. Do not use a detergent as it cannot be dispersed.

It is important that no water is allowed to get onto the other components, particularly microswitches, terminals or printed circuit boards.

3. Air drying. Do not use warm or hot air (hair dryer).

Maintenance

The measuring element is maintenance-free in pure ambient air. Aggressive media containing solvent can cause measuring errors and failure, depending on the type and concentration. Deposits which eventually form a water-repellent film over the measuring element are harmful (such as resin aerosols, lacquer aerosols, smoke deposits etc.)

Physical influence of temperature on the relative air humidity

at a temperature fluctuation of ± 1 K referred to various room temperatures.

	10°C	20°C	30°C	50°C
10%rh	+/-0,7%rh	+/-0,6%rh	+/-0,6%rh	+/-0,5%rh
50%rh	+/-3,5%rh	+/-3,2%rh	+/-3,0%rh	+/-2,6%rh
90%rh	+/-6,3%rh	+/-5,7%rh	+/-5,4%rh	+/-4,6%rh

It is thus of extreme importance that the temperature is constant for measurements of the relative air humidity. The air must be homogenous.

Contact with the inner parts of the hygro modul HM120 nullifies the warranty.

MCK...1K0

Technical Data

Humidity

measuring range	0100%rh
resolution	0.5%rh
accuracy ±2.5%r	n (1040 °C, 1090 %rh) ±1 digit
(other range ±5% rh ±1 digit
influence of temperature	±0.1% rh/K for < 10 °C and > 40 °C

Temperature

measuring ranges	colour code
resolution	0.125 °C
accuracy	. ± 0.5 K @ 23 °C ±1 digit
	(details see diagramm)

General data

operating voltage	530 V DC
output signal :	
MC(P)K1	2 x 01 V (at RL ≥ 100 kΩ)
MC(P)K6	digital (similar I ² C)
12	² C-bus-voltage
storage temperature	4085°C
working temperature	4085°C
working temperature (with	permanent cable)2070°C
power consumption	
•	•

degree of protection

sensor with PTFE filter ZE05 IP40/IP64 (cable vers	ions)
sensor with protective basket ZE07	IP00
sensor with protective basket ZE08	IP30

Maximum cable lengths:

- MC(P)K1 5 m at RL >= 100kOhm ¹) MC(P)K6 0.5m at a clock rate f = 100kHz¹
- longer cables possible depending on the load or 1) clock rate

M-Series Humidity/-temperature compact sensors with cable or plug-in connection

Miniature sensors / for assembly in non-visible areas

These sensors are especially adapted to the requirements of measurement tasks which only have limited space available. They are suitable for measuring the relative humidity and temperature in air and other non-aggressive gases. Using the sensors for outdoor applications is not recommended.

The sensors are based on our miniature sensors in the calHT series (product info B1.10). They are fitted with a filter and a 4-pin plug (MCK...4S0) or with a permanently connected 1.5 m long cable (MC(P)K...1Kn). Suitable cables for the model MCK...4S0 can be supplied in different lengths as an option.

The sensors feature high long-term stability, small hysteresis and good dynamic performance.

Series	Compact sensors	М
Design	with tube extension	Р
Design	direct connection plug or cable	С
Physical output	rel.humidity and temperature	К
Outruit sizes al	01 V	1
Output signal	I ² C	6
Special edition	none	00
	seal for increased requirements	0S
Measuring range H	0100 % r.h.	F1
Measuring range T	-3070 °C	37
	-2080 °C	28
	0100 °C	01
	-4060 °C	46
	-4085 °C (I²C)	48
Operating voltage	530 VDC	5
Filter	PTFE filter ZE05	05
	open ZE07 (standard)	07
	with membrane ZE08	08
	4-pin plug	4S0
Type of connection and characteristics	permanent cable 0,5 m	0K(n)
of the design	permanent cable 1,5 m	1K(n)
	special lengths of cable in m	yy(n)
	other specialities of design	Хуу

n: additional tube extension depending on sensor type and special design

(n) = 0:	no tube extension
(n) = 1:	total length sensor 53 mm
(n) = 4:	total length sensor 95 mm

Special versions available on request.

User instructions

Install the sensors at a place in the room where characteristic levels of humidity occur. Avoid installing them close to heaters or windows or against outside walls.

In general, the sensors are maintenance-free. If the PTFE filter is contaminated with dust, grease and oils, this can have a negative impact on the dynamic behaviour. In this case the sensor head of the plug version needs to be disconnected from the cable and to be cleaned by blowing or carefully rinsing off with distilled water. After removing the filter, make sure that the sensitive sensor surface is not touched, as this can lead to irreparable damage. An exact measured value can only be attained again after being completely dried; this also applies to condensation.

Please consult "application instructions for the sensing elements" (product info sheet no. A 1) for further information.

Working range of humidity and temperature

Temperature accuracy of the sensors

Dimensions diagrams

MCK...4S0

MCK.02-xx.x

order designation cable with jack:

MCK.02-xx.x

МРК...уу4

Colour code for output range and characteristics of types MCK...4S0

		colour code		
	0100	green		
measuring range	-2080	red		
[°C]	-3070	black (without)		
	-4060	yellow		
	-4085	white		
additional: s increased re		blue		

Configurations of cable versions

Variable	Pin	Pin configuration analogue	Pin configuration digital	conductor colour
UB +	1	530 VDC	+ UB	green (red)
UB - (GND)	2	GND	GND	brown (brown)
Humidity	3	0100% r.h.	SDA	white (black)
Temperature	4	1)	SCL	yellow (orange)

1) depending on sensor head selected (see table page 1)

Protocol for MC(P)K6.* (similar to I²C-output)

Microcontroller sends command for read-out of one byte

Microcontroller requests data byte according control command and reads out

S 1 0 0 1 0 0 1 A D	N A	N A	N A	D 0	D 1	D 2	D 3	D 4		D 5	D 6	D 7	A	1	0	0	0	1	0	0	1	S	
---	--------	--------	--------	--------	--------	--------	--------	--------	--	--------	--------	--------	---	---	---	---	---	---	---	---	---	---	--

from sensor

Symbol	Parameter	min	max	
t _{BUF}	idle period between BUS actions	4,7		μs
t _{D:SU}	data set-up time	250		ns
t _{D:HD}	data hold time	50		ns
t _{st:HD}	start hold time	4		μs
t _{st:su}	start set-up time	4,7		μs
t _{SCL:L}	SCL "low" time	4,7		μs
t _{scl:H}	SCL "high" time	4		μs
f _{scl}	SCL frequency		100	kHz
t,	SDA, SCL LOW/HIGH time		1	μs
t _r	SDA, SCL HIGH/LOW time		0,3	μs
t _{sto:su}	stop set-up time	4		μs
t _{sP}	interference signal rejection		100	ns
CL	capacity SDA, SCL BUS (internal pull-up 120 kΩ)		10	pF
t _{MUPD}			150	ms
t _{smpl}			5	ms
t _{Hold}	blocking time after device access	200		ms

Signal characteristics at 25 $^\circ\text{C}$ and 3.3 V I²C BUS voltage

C 4	C 3	C 2	C 1	
0	0	0	0	Read-Out Humidity
0	0	1	0	Read-Out Temperature Byte 1
0	0	1	1	Read-Out Temperature Byte 2

x will not be evaluated

= decimal value humidity * 0.5 = (decimal value temp.* 0.125)-40 (decimal value DV temp. = DV Byte 1+ DV Byte 2 * 256)

BUS Timing

000

Description of the Sensor

The sensor PM15P measures the air humidity by means of a humidiy-dependant condenser. The capacitive Mela[®] humidity measuring element, produced using thinfilm technology, consists of a base plate, on which the electrodes are housed and a hygroscopic polymer layer above it. The hygroscopic polymer layer absorbs water molecules from the medium to be measured (air) or releases them, thereby altering the capacity of the condenser.

The humidity or temperature values measured are calculated in the exchangeable PMU-P measuring head, with the calibration values stored there, and communicated on to the following electronic transmitter components as calibrated digital measuring values.

The PMU-P measuring heads are calibrated and thus enable a replacement within seconds. Replaced measuring heads can be recalibrated in the factory.

The transmitter with the hx processor uses the values of the relative humidity and the temperature to calculate the dew point temperature, the enthalpy, the mixing ratio, the absolute humidity or the wet-bulb temperature, in accordance with the laws of physics. The values are emitted at two analogue outputs with the standardised signals 0...10VDC, 0...1VDC, 0...20mA or 4...20mA. The outputs can be configured differently and are defined using the software.

The Mela[®] measuring element is protected by a filter and a basket guard. The sensors are designed for unpressurised systems, the measurement medium is non-aggressive air.

Please consult the application instructions for the sensing elements (product info sheet no. A 1) or check with the manufacturer for further information which you need to bear in mind when using humidity sensors with capacitive sensing elements.

- 2) Higher accuracies on request.
- ³⁾ The accuracy of the calculated values depends on both the operating point in accordance with the hx diagram and on the primary values measured.
- 4) See load diagram

PM15P

Modular Sensor for Humidity and Temperature with hx processor

Digital Measuring Head PMU-P

Humidity

measuring range	0100%rh
measuring accuracy 1090%rh at 25°	C ±1.5%rh ¹⁾²⁾
at <10%rh or >90%rh	±2%rh
at <10°C or >40°C	±0.05%rh/K additional
resolution	0.01%rh (read out)
hysteresis	< 1%rh
protection against dust	

Temperature

measuring element	Pt1000 1/3DIN
measuring range	40+85°C
measuring accuracy	±0.15 K at 25°C
resolution	0.01 K (read out)
influence of temperature (TK) .	

Transmitter PMO15P with hx processor

physical outputs

		e 070°C ³⁾
	enthalpy	080 kJ/kg ³
	mixing ratio	0100g/kg dry air ³⁾
	absolute humidity	020g/m ³ or 0100g/m ³)
	wet-bulb temperature	
	relative humidity	0100%rh
	temperature ranges	
		-30+70°C; 0+50°C; 0100°C
There ar	e respectively 2 physical va	alues available at the output
respon	se time tes at v=2m/s v	vith PTFE-pocket filter < 15 s
	al outputs	
	voltage	2x 01VDC or 2x 010VDC
		2x 0(4)20mA
linearity	у	
power	supply .	01V 630V DC
		010V 1530V DC
		0(4)20mA 630V DC ⁴⁾
		acc. diagram
electro	magnetic compatibility	ref. EN 61326-1
min. loa	ad resistance for volta	ge output 10 kOhm
consun	nption of electronics	<10 mA
		ture+70°C
		15m/s
minimu	im air speed across th	
for outp	out: 2x 0(4)20mA	
		01V≥0.5 m/s
		IP 64
		plastic, black
		optional
cable c	connection 6 x AWG24	2.5 m

¹⁾ Ex works. Depending on the specific range of application a regular recalibration of the measuring head (PMU-P) has to be effected.

ESD protection advice

All PM15P sensors are made up of a PMO15P transmitter with a PMU-P sensor head and contain components which can be damaged by the effects of electrical fields or by charge equalisation when touched. This is why the PMU-P sensor heads, that can be supplied separately and that are suitable for being exchanged on location, are packaged in conductive, reusable ESD protected bags.

The following protective measures must be taken when exchanging a PMU-P sensor head on the PMO15P transmitter:

- Before unpacking the PMU-P sensor head, ensure electrical potential equalisation between you and your environment.
- Pay particular attention to ensuring that this potential equalisation is maintained while you are exchanging the PMU-P sensor head.
- Only store or transport the PMU-P sensor head in the ESD protective bag supplied, or in comparable packaging

Type	Order No.	Physical output 1	Measuring value 1	Electrical output 1	Physical output 2	Measuring value 2	Electrical output 2
PMU-P "plug and mea	6201010232AA asure unit"	relative humidity	0100%rh	ASCII (digital)	temperature	-3070°C	ASCII (digital)
PM15P	700101023211	relative humidity	0100%rh	010VDC	temperature	-30+70°C	010VDC
	700101023111	relative humidity	0100%rh	010VDC	temperature	0100°C	010VDC
	700101023011	relative humidity	0100%rh	010VDC	temperature	0+50°C	010VDC
υ	700305023211	dew point temperature	070°C	010VDC	temperature	-30+70°C	010VDC
010VDC	700410023211	enthalpy	080kJ/kg	010VDC	temperature	-30+70°C	010VDC
01	700515023211	mixing ratio	0100g/kg dry air	010VDC	temperature	-30+70°C	010VDC
	700621023211	absolute humidity	0100g/m³	010VDC	temperature	-30+70°C	010VDC
	700620023211	absolute humidity	020g/m ³	010VDC	temperature	-30+70°C	010VDC
	700833023211	wet-bulb temperature	-10+50°C	010VDC	temperature	-30+70°C	010VDC
PM15P	700101023221	relative humidity	0100%rh	01VDC	temperature	-30+70°C	01VDC
	700101023121	relative humidity	0100%rh	01VDC	temperature	0100°C	01VDC
	700101023021	relative humidity	0100%rh	01VDC	temperature	0+50°C	01VDC
	700305023221	dew point temperature	070°C	01VDC	temperature	-30+70°C	01VDC
01VDC	700410023221	enthalpy	080kJ/kg	01VDC	temperature	-30+70°C	01VDC
01	700515023221	mixing ratio	0100g/kg dry air	01VDC	temperature	-30+70°C	01VDC
	700621023221	absolute humidity	0100g/m³	01VDC	temperature	-30+70°C	01VDC
	700620023221	absolute humidity	020g/m ³	01VDC	temperature	-30+70°C	01VDC
	700833023221	wet-bulb temperature	-10+50°C	01VDC	temperature	-30+70°C	01VDC

Type	Order No.	Physical output 1	Measuring value 1	Electrical output 1	Physical output 2	Measuring value 2	Electrical output 2
PMU-P "plug and n	6201010232AA neasure unit"	relative humidity	0100%rh	ASCII (digital)	temperature	-3070°C	ASCII (digital)
PM15P	700101023261	relative humidity	0100%rh	020mA	temperature	-30+70°C	020mA
	700101023161	relative humidity	0100%rh	020mA	temperature	0100°C	020mA
	700101023061	relative humidity	0100%rh	020mA	temperature	0+50°C	020mA
	700305023261	dew point temperature	070°C	020mA	temperature	-30+70°C	020mA
020mA	700410023261	enthalpy	080kJ/kg	020mA	temperature	-30+70°C	020mA
02	700515023261	mixing ratio	0100g/kg dry air	020mA	temperature	-30+70°C	020mA
	700621023261	absolute humidity	0100g/m³	020mA	temperature	-30+70°C	020mA
	700620023261	absolute humidity	020g/m³	020mA	temperature	-30+70°C	020mA
	700833023261	wet-bulb temperature	-10+50°C	020mA	temperature	-30+70°C	020mA
PM15P	700101023271	relative humidity	0100%rh	420mA	temperature	-30+70°C	420mA
	700101023171	relative humidity	0100%rh	420mA	temperature	0100°C	420mA
	700101023071	relative humidity	0100%rh	420mA	temperature	0+50°C	420mA
	700305023271	dew point temperature	070°C	420mA	temperature	-30+70°C	420mA
	700410023271	enthalpy	080kJ/kg	420mA	temperature	-30+70°C	420mA
20mA	700515023271	mixing ratio	0100g/kg dry air	420mA	temperature	-30+70°C	420mA
42	700621023271	absolute humidity	0100g/m³	420mA	temperature	-30+70°C	420mA
	700620023271	absolute humidity	020g/m³	420mA	temperature	-30+70°C	420mA
	700833023271	wet-bulb temperature	-10+50°C	420mA	temperature	-30+70°C	420mA
	further outputs a	nd measuring ranges on c	lemand				

Accuracy of humidity in %rh at 25°C

• Calibration values (humidity generator)

Load for 0(4)...20mA current version

Supply in VDC

Dimensions

Connection diagrams

000

PM15PS

Sensor for humidity and temperature with RS232 signal level converter

for digital transfer of the measurement values Rod design

with exchangeable "Plug and Measure Unit" PMU

Description

The PM15PS transmitter by Galltec+Mela combines digital Plug-and-Measure technology with the advantages of a digital RS232 output, making it suitable for data transfer via a network or the Internet.

Equipped with the serial Sub-D jack, the PM15PS is suitable for being installed in systems and also for local applications, for example with a laptop.

Like all Plug-and-Measure sensors, the PM15PS is equipped with a digital PMU: The capacitively measured humidity values and the temperature values measured by using a PT1000, are calculated in the calibrated Plug-and-Measure Unit PMU, with the calibration values stored there, and are passed on as digital measurement values. The PMU measuring heads are exchangeable and can be factory-calibrated and readjusted using software.

Technical Data for Humidity and Temperature

Humidity

measuring range	0100% rh
measuring accuracy 1090 % rh at 23° C	±1.5% rh
at <10%rh and >90%rh	±2% rh
at <10°C and >40°C ±0.05%	rh/K additional
influence of temperature	. <0.04% rh/K
response time T ₉₀ at v=2m/s	< 10 s
resolution 0.019	% rh (read out)
filter PTFE	element filter

Temperature

measuring element (ref. DIN IEC 751)	. Pt1000 1/3-DIN cl.B
accuracy @ 23°C	±0.15 K
influence of temperature (TK)	<0.004 K/K
resolution	. 0.01°C (read out)

electromagnetic compatibility EN 61326-1 / A1 max. transfer distance for RS23215 m

General

General Technical Data

max. ambient temperature at the housing (PMO) 70° C
housing plastic, black
degree of protection housing (PMO) IP64
measuring head (PMU) IP30
9 pin SUB-D data line (jack) 2.3 m

Type Survey

Туре	Product No.	Measuring Range		PMU-Type	max. ambient temperature	Output
		rel. humidity	temperature		at PMU	
PM15PS	700101023583	0 100 % rh	-40 +85°C	PMU-P	-20 +70°C	RS232

Software "VisualPMU" (Freeware)

This simple and very clear visualisation software supports the data output of a sensor via a serial interface on the PC or Laptop without an additional power supply.

For USB connections, a USB adapter can be supplied.

The relative humidity, the dew point and the temperature (°C or F) can be displayed and can be depicted as a graph. Apart from that, the programme has a simple data logger function. Recorded data can be exported to other programmes. This freeware version can be obtained from our Homepage www.galltec-mela.de as a free of charge download..

Connection settings

enschaften von CO	M3	?
nschlusseinstellungen		
Bjts pro Sekunde:	9600	~
<u>D</u> atenbits:	8	~
<u>P</u> arität:	Keine	~
S <u>t</u> oppbits:	1	*
Elusssteuerung:	Hardware	~

HyperTerminal (Windows)

The sensor PM15PS can be read via the Hyper Terminal programme from Windows. The picture below shows the character string of the data issued by the P15PS.

PMU - HyperTerminal Datei Bearbeiten Ansicht	Anruf Übertragung ?		
06 08 02			
eT;+028.6;A00 eT;+028.6;A00 eT;+028.6;A00 eT;+028.6;A00 eT;+028.7;A00 eT;+028.8;A00	;F;027.2;A00; ;F;027.2;A00; ;F;027.1;A00; ;F:027.1;A00;	00251979;8 00251979;8 00251979:8	13 14 13
erbunden 00:03:24	Autom, Erkenn,	9600 8-N-1	REG

Notes on ASCII protocol

start of protocol	end of protocol	separation sign
@	"CR" and "LF"	". " ,

The measurement data is sent in the measurement phase as ASCII-protocol on the RxD-pin: <alarm-<alarm-<serial <check-@T <humidity> <CR> <LF> <sign> <temperature> F code> code> number> sum> Example: 021.37; A00; F; A00; 00000121; 38 control character control character @T; 038.92; + Carriage Return Line Feed The check sum is calculated as follows: check sum = 255 (∑_{dez} % 256) check sum hex = check sum dez = _ Example: check sum = 255 - (1991 Modulo 256) = 255 - 199 = 56 = 38 hex

The check sum is not transmitted as a hexadecimal character with 1 byte, but is translated into readable digits with 2 bytes. Through the comparison of the transmitted check sum with a check sum calculated at the read-out point, the user has the opportunity to check whether the transmission of the data is error-free.

Alarm codes:

Tempera	ature channel:	Humidity channel:		
A00 =	no alarm, the temperature value is within the limits	A00 =	no alarm, the humidity value is within the limits	
A01 =	temperature measurement range exceeded	A01 =	humidity measurement range exceeded (=100% rh)	
A02 =	below temperature measurement range	A02 =	below humidity measurement range (= 0% rh)	
A03 =	no sensor signal	A03 =	no sensor signal	
A04 =	short circuit at PT1000 (resistance < 500 Ω)	A04 =	humidity sensor defective	

Accessories

Description	Data sheet	Description
USB-Adapter serial -> USB	-	USB adapter for Sub-D-data line To connect up the Sub-D-data line to a USB interface on the PC or Laptop
ZA 24	F5.1	Attachment plate for attaching ducts or wall bushings for sensor tubes 15 mm
ZE 31/1-12 ZE 31/1-33 ZE 31/1-75 ZE 31/1-84	F5.2	Standard humidity to check the accuracy of the sensors 12 %rh and 25°C Standard humidity to check the accuracy of the sensors 33 %rh and 25°C Standard humidity to check the accuracy of the sensors 75 %rh and 25°C Standard humidity to check the accuracy of the sensors 84 %rh and 25°C
ZE33	F5.2	Adapter for humidity standards ZE 31/1

User information

Installation

The sensors are to be attached in a position representative for the climate measurement.

The position the sensor is mounted in (horizontal, vertical) does not matter. However, it should be mounted in such a way that no water can get into it.

Please note the maximum permissible ambient temperature when installing it (max. +70°C).

In a clean environment, the sensor is maintenance-free.

The capacitive MELA sensor element is also protected by the integrated PTFE filter.

Dust does not cause any harm to the humidity sensor, however, if there is an increased build-up of dust this does affect dynamic performance.

If there is too much dust around, then the protective basket can be carefully removed and washed. Loose dirt can also be removed from the PTFE filter above the sensor element by being blown on or carefully rinsed with distilled water. Caution! The PTFE filter may not be removed from the sensor element!

Dew formation

Dew formation and splashes do not damage the sensor, although corrupted measurement readings are recorded until all the moisture on and directly around the sensor element has dried up.

Damaging Influences

Agents that are corrosive and contain solvents, depending upon the type and concentration of the agent, can result in faulty measurements and cause the measuring element to break down. Substances deposited on the sensor are damaging as they form a water-repellent film (this applies to all humidity sensors with hygroscopic measuring elements); e.g. resin aerosols, lacquer aerosols, smoke deposits etc. In order to check functioning in the place of installation, we recommend that you use our *ZE31/1*-type *humidity standard... (accessories)*.

To ensure the given accuracy of the sensors, we recommend a regular calibration cycle (timing depends on the kind of application).

Please consult the *application instructions* for the sensing elements (product info sheet no. A 1 and B1.1), which you can get from www.galltec-mela.de, for further information which you need to bear in mind when using humidity sensors with capacitive sensing elements.

Dimensions

Description of the sensor

The exchangeable digital sensor PMU-P is equipped with the tried and tested Mela[®] humidity measuring element FE09/4. Protected by a PTFE pocket filter, the measuring element measures the air humidity. The pocket filter consists of porous vapour-permeable material and protects the sensor element from most dirt, dust and pollutants.

The electronics and the plug contacts on the back are extrusion-coated with plastic to make them watertight.

The capacitive Mela[®] humidity measuring element, produced using thin-film technology, consists of a base plate, on which the electrodes are housed, and a hygroscopic polymer layer above it. The hygroscopic polymer layer absorbs water molecules from the medium to be measured (air) or releases them, thereby altering the capacity of the condenser.

The electronics sets off the humidity values measured in this way against the calibration values it has stored and emits them via the plug contacts in the form of calibrated, digital ASCII protocol. The sensor head is also equipped with a temperature probe Pt1000 1/3DIN which is used for both acquiring the air temperature and also for temperature compensation in the humidity measurement by the PMU-P.

The PMU-P measuring heads are calibrated and thus enable an easy replacement. Replaced measuring heads can be recalibrated in the factory.

Please consult the "application instructions for the sensing elements" (product info sheet no. A 1) or check with the manufacturer for further information which you need to bear in mind when using humidity sensors with capacitive sensing elements.

²⁾ Higher accuracies on request.

Digital Humidity-Temperature Sensor PMU-P

Order No. 620101023594

with asynchronous ASCII transmission protocol, calibrated for relative humidity and temperature in exchangeable, plug-in design.

Technical Data

Humidity

measuring range	0100%rh
measuring accuracy 1090%rh at 2	25°C ±1,5%rh ¹⁾²⁾
at <10%rh or >90%rh	±2%rh
at <10°C or >40°C	±0,05%rh/K additional
resolution	0,01%rh (read out)
hysteresis	< 1%rh
protection against dust	PTFE pocket filter

Temperature

measuring element	Pt1000 1/3DIN
measuring range	40+85°C
measuring accuracy	±0,15 K at 25°C
resolution	0,01K (read out)
influence of temperature (TK)	<0,005 K/K

General

permissible ambient temperature
response time t_{e3} at v=2m/s with PTFE-pocket filter < 15 s
protective system sensor IP20
protective system plug IP40
measuring medium air, pressureless, non-aggressive
Vcc 3.3VDC
putput ASCII (Galltec-protocol)
housing plastic
consumption of electronics < 5 mA
maximum air speed 15 m/s
mounting position optional
electromagnetic compatibility EN 61326-1
contacting 4Pin female socket, series 719 from Binder

Accuracy of humidity in %rh at 25°C

Calibration values (humidity generator)

¹⁾ Ex works. Depending on the specific range of application a regular recalibration of the sensor head (PMU-P) has to be effected.

All PM15P sensors are made up of a PMO15P transmitter with a PMU-P sensor head and contain components which can be damaged by the effects of electrical fields or by charge equalisation when touched. This is why the PMU-P sensor heads, that can be supplied separately and that are suitable for being exchanged on location, are packaged in conductive, reusable ESD protected bags.

The following protective measures must be taken when exchanging a PMU-P sensor head on the PMO15P transmitter:

- Before unpacking the PMU-P sensor head, ensure electrical potential equalisation between you and your environment.
- Pay particular attention to ensuring that this potential equalisation is maintained while you are exchanging the PMU-P sensor head.
- Only store or transport the PMU-P sensor head in the ESD protective bag supplied, or in comparable packaging

%r.h. 100% 80% 60% recommended working range 40% 20% 0% -40°C 0°C 40°C

Working range humidity and temperature

Dimensions and connection diagramm

Function and implementation of the digital humidity temperature sensor PMU-P

The exchangeable digital measuring head measures the current temperature and the relative humidity in the direct surroundings.

Output

After contacting and supply via Vcc & GND, the measuring head automatically transmits the measurement protocol via the TxD pin. Every 3-4 seconds the respective current measurement value is re-issued at 9600 Baud. Between the individual measurement protocols (ASCII output), the TxD pin is at 3.3V DC (High Level).

Symbol	Parameter	Min	Max
Vcc	Supply Voltage	3,2 V	3,4 V
Vss	Supply Voltage GND	0 V	0 V
Vol	Output low voltage	Vss	Vss + 0,6V
Voh	Output high voltage	Vcc - 0,6V	Vcc
loh	Output source current		0,5mA at Vcc = 3,3V
lol	Output sink current		0,5mA at Vcc = 3,3V

The above table shows the electrical signals of the digital sensor head PMU-P. The customer must provide a stable, regulated distribution voltage of +3.3V DC.

Notes on ASCII protocol

start of protocol			en	nd of protoco	protocol			separation sign		
		@			"	CR" and	l "LF"	F" "; "		". "
The measurement data is sent in the measurement phase as ASCII-protocol on the RxD-pin:										
@T	<sign></sign>	<temperature></temperature>	<alarm- code></alarm- 	F	<humidity></humidity>	<alarm- code></alarm- 	<serial number></serial 	<check- sum></check- 	· <cr></cr>	<lf></lf>
Exar @T	mple: ; +	021.37;	A00;	F;	038.92;	A00;	00000121;	38	control character Carriage Return	control character Line Feed
The	check sum	is calculated a	s follows:							
	check sur	n = 25	5 -	(Σ _{de}	_{ez} % 256)	=	Check sum	¹ dez	= Check	sum _{hex}
Example: check sum = 255 - (1991 Modulo 256) = 255 - 199 = 56 = 38 _{hex}										

The check sum is not transmitted as a hexadecimal character with 1 byte, but is translated into readable digits with 2 bytes. Through the comparison of the transmitted check sum with a check sum calculated at the read-out point, the user has the opportunity to check whether the transmission of the data is error-free.

Alarm codes:

Tempera	ature channel:	Humidityl channel:		
A00 =	no alarm, the temperature value is within the limits	A00 =	no alarm, the humidity value is within the limits	
A01 =	temperature measurement range exceeded	A01 =	humidity measurement range exceeded (=100% rh)	
A02 =	below temperature measurement range	A02 =	below humidity measurement range (= 0% rh)	
A03 =	no sensor signal	A03 =	no sensor signal	
A04 =	short circuit at PT1000 (resistance < 500 Ω)	A04 =	humidity sensor defective	

Please note:

- > Short leads (max. 1m) between PMU-P and the analysis electronics (provided by customer);
- > PMU-P must be contacted, powered and analysed via hardware and software by customer;
- > The PMU-P is not a "stand alone" device and must be checked together with the analysis electronics in accordance with the EMC guidelines;
- > The PMU-P does not have an internal polarity reversal protection. Please ensure that the plug contact is only connected to the correct voltage level;

Connection settings

9600	~
8	~
Keine	~
1	~
Hardware	~
	derherstellen
	9600 8 Keine 1 Hardware

Output via the Hyper Terminal

In connection with a separate signal level converter (RS232), the PMU-P can be read via the Hyper Terminal programme in Windows. The picture below shows the character string of the data issued by the PMU-P.

Output via Visual PMU

For recording data and for online display purposes, the visualisation programme "Visual PMU" by Galltec+Mela is available.

🎨 PMU - HyperTerminal			- O ×
Datei Bearbeiten Ansicht	Anruf Übertragung ?		
0 0 0 0 0 0 0 0	9 🖻		
@T;+028.6;A00 @T;+028.6;A00 @T;+028.6;A00 @T;+028.6;A00 @T;+028.7;A00 @T;+028.8;A00	;F;027.2;A00; ;F;027.1;A00; :F:027.1:A00:	00251979;8 00251979;8 00251979:8	33 34 33
•			
/erbunden 00:03:24	Autom, Erkenn,	9600 8-N-1	BFE

Connector versions for contacting the PMU-P

Binder No.	Version	Model	
09-9766-20-04	female	Soldered connection for printed- circuit boards	
09-9766-30-04	female	solder termination	
09-9764-70-04	female	cable connector with strain relief	-
09-9764-00-04	female	cable connector without strain relief	

000

Description of the Sensor

PM-V sensors with integrated hx-processor measure humidity by means of a humidity-dependant condenser. The capacitive Mela® humidity measuring element, produced using thinfilm technology, consists of a base plate, on which the electrodes are housed and a hygroscopic polymer layer above it. The hygroscopic polymer layer absorbs water molecules from the medium to be measured (air) or releases them, thereby altering the capacity of the condenser.

The humidity or temperature values measured are calculated in the exchangeable PMU-V measuring head, with the calibration values stored there, and communicated on to the following electronic transmitter components as calibrated digital measuring values.

The PMU-V measuring heads are calibrated and thus enable an easy replacement. Replaced measuring heads can be recalibrated in the factory.

The transmitter with the hx processor uses the values of the relative humidity and the temperature to calculate the dew point temperature, the enthalpy, the mixing ratio, the absolute humidity or the wet-bulb temperature, in accordance with the laws of physics. The values are emitted at two analogue outputs with the standardised signals 0....10VDC, 0....1VDC, 0....20mA or (0) 420mA. The outputs can be configured differently and are defined using the software. Further measuring ranges on request.

The Mela® measuring element is protected by a filter and a basket guard. The PM-V is supplied with a ZE04 filter with PTFE protection (IP00). The sensors are designed for unpressurised systems, the measurement medium is non-aggressive air.

Please consult the "application instructions for the sensing elements" (product info sheet no. A 1) or check with the manufacturer for further information which you need to bear in mind when using humidity sensors with capacitive sensing elements.

¹⁾ Ex works. Depending on the specific range of application a regular ecalibration of the sensor head (PMU-V) has to be effected.

- ²⁾ Higher accuracies on request.
- ³⁾ The accuracy of the calculated values depends on both the opera ting point in accordance with the hx diagram and on the primary values measured.
- 4) See load diagram

PM-V

Sensor for Humidity and Temperature with hx Processor

with calibrated and exchangeable measuring head for direct output of various physical values

Digital Measuring Head PMU-V

Humidity

measuring range	0100%rh
measuring accuracy 1090%rh at 23°C	±1.5%rh ¹⁾²⁾
at <10%rh or >90%rh	±2%rh
at <10°C or >40°C ±0.05%ı	h/K additional
resolution 0.01	%rh (read out)
hysteresis	

Temperature

remperature	
measuring element	Pt1000 1/3DIN
measuring range	40+85°C
measuring accuracy	
resolution	
influence of temperature (TK)	
housing	stainless steel
filter	

Transmitter PMO...V with hx Processor

physical outputs dew point temperature 0...70°C ³⁾ enthalpy 0...80 kJ/kg ³ mixing ratio 0...100g/kg dry air ³ absolute humidity 0...20g/m3 or 0...100g/m3 3/ wet-bulb temperature -10...+50°C ³⁾ relative humidity 0...100%rh temperature ranges -30...+70°C; 0...+50°C; 0...100°C There are respectively 2 physical values available at the output response time t₆₃ at v=2m/s < 15 s electrical outputs voltage 2x 0...1VDC, or 2x 0...10VDC current (PM80V and PM100V) 2x 0(4)...20mA power supply: PM80V + PM100V: 0 ...1V: 6 ... 30V DC / 24V AC ±10% 0 ... 10V: 15 ... 30V DC / 24V AC ±10% 0(4) ... 20mA: 15 ... 30VDC4) PM15V: 0 ... 1V: 6 ... 30VDC 0 ... 10V: 15 ... 30VDC electromagnetic compatibility ref. EN61326-1 min. load resistance for voltage output 10 kOhm load for current outputacc. diagram permissible ambient temperature at the sensor tube-40...+85°C at the housing (PM80V)--40...+85°C (PM100V)-10...+60°C max. air speed 15m/s minimum air speed across the measuring head 2 x 0(4)...20mA 1,5 m/s for output: 2 x 0...1V, 2 x 0...10V 1 m/s housing PMO100V ABS light grey PMO80V aluminium die-casting, varnished PMO15V stainless steel protective system housing PM15V, PM80V IP65 protective system housing PM100VIP64 protective system connector IP65 probe material stainless steel mounting position optional contacting connecting terminals 1.5mm² in the housing PM15V length of connection cable 1.5m

п

Type	Order No.	Physical output 1	Measuring value 1	Electrical output 1	Physical output 2	Measuring value 2	Electrical output 2
PMU-V "plug-and-mea	630101023594 asure unit"	relative humidity	0100%rh	ASCII (digital)	temperature	-3070°C (-4085°C)	ASCII (digital)
PM80V	740101023261	relative humidity	0100%rh	020mA	temperature	-30+70°C	020mA
duct version alu housing	740101023161	relative humidity	0100%rh	020mA	temperature	0100°C	020mA
	740101023061	relative humidity	0100%rh	020mA	temperature	0+50°C	020mA
	740305023261	dew point temperature	070°C	020mA	temperature	-30+70°C	020mA
020mA	740410023261	enthalpy	080kJ/kg	020mA	temperature	-30+70°C	020mA
02	740515023261	mixing ratio	0100g/kg dry air	020mA	temperature	-30+70°C	020mA
	740621023261	absolute humidity	0100g/m³	020mA	temperature	-30+70°C	020mA
	740620023261	absolute humidity	020g/m ³	020mA	temperature	-30+70°C	020mA
	740833023261	wet-bulb temperature	-10+50°C	020mA	temperature	-30+70°C	020mA
PM80V duct version	740101023271	relative humidity	0100%rh	420mA	temperature	-30+70°C	420mA
alu housing	740101023171	relative humidity	0100%rh	420mA	temperature	0100°C	420mA
	740101023071	relative humidity	0100%rh	420mA	temperature	0+50°C	420mA
	740305023271	dew point temperature	070°C	420mA	temperature	-30+70°C	420mA
420mA	740410023271	enthalpy	080kJ/kg	420mA	temperature	-30+70°C	420mA
42	740515023271	mixing ratio	0100g/kg dry air	420mA	temperature	-30+70°C	420mA
	740621023271	absolute humidity	0100g/m³	420mA	temperature	-30+70°C	420mA
	740620023271	absolute humidity	020g/m³	420mA	temperature	-30+70°C	420mA
	740833023271	wet-bulb temperature	-10+50°C	420mA	temperature	-30+70°C	420mA
PM100V duct version	750101023261	relative humidity	0100%rh	020mA	temperature	-30+70°C	020mA
ABS housing	750101023161	relative humidity	0100%rh	020mA	temperature	0100°C	020mA
	750101023061	relative humidity	0100%rh	020mA	temperature	0+50°C	020mA
	750305023261	dew point temperature	070°C	020mA	temperature	-30+70°C	020mA
An	750410023261	enthalpy	080kJ/kg	020mA	temperature	-30+70°C	020mA
020mA	750515023261	mixing ratio	0100g/kg dry air	020mA	temperature	-30+70°C	020mA
Ö	750621023261	absolute humidity	0100g/m³	020mA	temperature	-30+70°C	020mA
	750620023261	absolute humidity	020g/m ³	020mA	temperature	-30+70°C	020mA
	750833023261	wet-bulb temperature	-10+50°C	020mA	temperature	-30+70°C	020mA
PM100V duct version	750101023271	relative humidity	0100%rh	420mA	temperature	-30+70°C	420mA
ABS housing	750101023171	relative humidity	0100%rh	420mA	temperature	0100°C	420mA
	750101023071	relative humidity	0100%rh	420mA	temperature	0+50°C	420mA
MM	750305023271	dew point temperature	070°C	420mA	temperature	-30+70°C	420mA
420mA	750410023271	enthalpy	080kJ/kg	420mA	temperature	-30+70°C	420mA
4	750515023271	mixing ratio	0100g/kg dry air	420mA	temperature	-30+70°C	420mA
	750621023271	absolute humidity	0100g/m³	420mA	temperature	-30+70°C	420mA
	750620023271	absolute humidity	020g/m ³	420mA	temperature	-30+70°C	420mA
	750833023271	wet-bulb temperature	-10+50°C	420mA	temperature	-30+70°C	420mA

Type	Order No.	Physical output 1	Measuring value 1	Electrical output 1	Physical output 2	Measuring value 2	Electrical output 2
PM80V duct version	740101023211	relative humidity	0100%rh	010VDC	temperature	-30+70°C	010VDC
alu housing	740101023111	relative humidity	0100%rh	010VDC	temperature	0100°C	010VDC
	740101023011	relative humidity	0100%rh	010VDC	temperature	0+50°C	010VDC
	740305023211	dew point temperature	070°C	010VDC	temperature	-30+70°C	010VDC
	740410023211	enthalpy	080kJ/kg	010VDC	temperature	-30+70°C	010VDC
Q	740515023211	mixing ratio	0100g/kg dry air	010VDC	temperature	-30+70°C	010VDC
010VDC	740621023211	absolute humidity	0100g/m³	010VDC	temperature	-30+70°C	010VDC
01	740620023211	absolute humidity	020g/m ³	010VDC	temperature	-30+70°C	010VDC
	740833023211	wet-bulb temperature	-10+50°C	010VDC	temperature	-30+70°C	010VDC
PM80V	740101023221	relative humidity	0100%rh	01VDC	temperature	-30+70°C	01VDC
duct version alu housing	740101023121	relative humidity	0100%rh	01VDC	temperature	0100°C	01VDC
	740101023021	relative humidity	0100%rh	01VDC	temperature	0+50°C	01VDC
	740305023221	dew point temperature	070°C	01VDC	temperature	-30+70°C	01VDC
	740410023221	enthalpy	080kJ/kg	01VDC	temperature	-30+70°C	01VDC
DC	740515023221	mixing ratio	0100g/kg dry air	01VDC	temperature	-30+70°C	01VDC
01VDC	740621023221	absolute humidity	0100g/m³	01VDC	temperature	-30+70°C	01VDC
0	740620023221	absolute humidity	020g/m³	01VDC	temperature	-30+70°C	01VDC
	740833023221	wet-bulb temperature	-10+50°C	01VDC	temperature	-30+70°C	01VDC
PM100V	750101023211	relative humidity	0100%rh	010VDC	temperature	-30+70°C	010VDC
duct version ABS housing	750101023111	relative humidity	0100%rh	010VDC	temperature	0100°C	010VDC
	750101023011	relative humidity	0100%rh	010VDC	temperature	0+50°C	010VDC
	750305023211	dew point temperature	070°C	010VDC	temperature	-30+70°C	010VDC
ç	750410023211	enthalpy	080kJ/kg	010VDC	temperature	-30+70°C	010VDC
010VDC	750515023211	mixing ratio	0100g/kg dry air	010VDC	temperature	-30+70°C	010VDC
01	750621023211	absolute humidity	0100g/m³	010VDC	temperature	-30+70°C	010VDC
	750620023211	absolute humidity	020g/m ³	010VDC	temperature	-30+70°C	010VDC
	750833023211	wet-bulb temperature	-10+50°C	010VDC	temperature	-30+70°C	010VDC
PM100V	750101023221	relative humidity	0100%rh	01VDC	temperature	-30+70°C	01VDC
duct version ABS housing	750101023121	relative humidity	0100%rh	01VDC	temperature	0100°C	01VDC
	750101023021	relative humidity	0100%rh	01VDC	temperature	0+50°C	01VDC
	750305023221	dew point temperature	070°C	01VDC	temperature	-30+70°C	01VDC
0	750410023221	enthalpy	080kJ/kg	01VDC	temperature	-30+70°C	01VDC
01VDC	750515023221	mixing ratio	0100g/kg dry air	01VDC	temperature	-30+70°C	01VDC
0	750621023221	absolute humidity	0100g/m³	01VDC	temperature	-30+70°C	01VDC
	750620023221	absolute humidity	020g/m ³	01VDC	temperature	-30+70°C	01VDC
	750833023221	wet-bulb temperature	-10+50°C	01VDC	temperature	-30+70°C	01VDC

Type	Order No. (PM-key)	Physical output 1	Measuring value 1	Electrical output 1	Physical output 2	Measuring value 2	Electrical output 2
PMU-V "plug-and-mea	630101023594 asure unit"	relative humidity	0100%rh	ASCII (digital)	temperature	-3070°C (-4085°C)	ASCII (digital)
PM15V	730101023211	relative humidity	0100%hr	010VDC	temperature	-30+70°C	010VDC
cable version	730101023111	relative humidity	0100%rh	010VDC	temperature	0100°C	010VDC
	730101023011	relative humidity	0100%rh	010VDC	temperature	0+50°C	010VDC
U	730305023211	dew point temperature	070°C	010VDC	temperature	-30+70°C	010VDC
010VDC	730410023211	enthalpy	080kJ/kg	010VDC	temperature	-30+70°C	010VDC
01	730515023211	mixing ratio	0100g/kg dry air	010VDC	temperature	-30+70°C	010VDC
	730621023211	absolute humidity	0100g/m³	010VDC	temperature	-30+70°C	010VDC
	730620023211	absolute humidity	020g/m³	010VDC	temperature	-30+70°C	010VDC
	730833023211	wet-bulb temperature	-10+50°C	010VDC	temperature	-30+70°C	010VDC
PM15V cable version	730101023221	relative humidity	0100%rh	01VDC	temperature	-30+70°C	01VDC
	730101023121	relative humidity	0100%rh	01VDC	temperature	0100°C	01VDC
	730101023021	relative humidity	0100%rh	01VDC	temperature	0+50°C	01VDC
	730305023221	dew point temperature	070°C	01VDC	temperature	-30+70°C	01VDC
01VDC	730410023221	enthalpy	080kJ/kg	01VDC	temperature	-30+70°C	01VDC
0	730515023221	mixing ratio	0100g/kg dry air	01VDC	temperature	-30+70°C	01VDC
	730621023221	absolute humidity	0100g/m³	01VDC	temperature	-30+70°C	01VDC
	730620023221	absolute humidity	020g/m³	01VDC	temperature	-30+70°C	01VDC
	730833023221	wet-bulb temperature	-10+50°C	01VDC	temperature	-30+70°C	01VDC

Accuracy of humidity in %rh at 23°C

Load for 0(4)...20mA current version

ESD protection advice

All PM15V sensors are made up of a PMO15V transmitter with a PMU-V sensor head and components which can be damaged by the effects of electrical fields or by charge equalisation when touched. This is why the PMU-V sensor heads, that can be supplied separately and that are suitable for being exchanged on location, are packaged in conductive, reusable ESD protected bags.

The following protective measures must be taken when exchanging a PMU-V sensor head on the PMO15V transmitter:

- Before unpacking the PMU-V sensor head, ensure electrical potential equalisation between you and your environment.
- Pay particular attention to ensuring that this potential equalisation is maintained while you are ex changing the PMU-V sensor head.
- Only store or transport the PMU-V sensor head in the ESD protective bag supplied, or in comparable packaging

Connection diagrams PM80V, PM100V

Shielding PM80V

Please fix the shielding for PM80V (with alu housing) in the cable gland (see photo).

Connection diagram PM15V

Humidity-Temperature Sensor PM100V

with plastic housing IP64

with housing made of aluminium die-casting IP65

Humidity-Temperature Sensor PM15V

in cable version

Dimensions

Electrical connection

Compact microprocessor controller TFR2 for humidity, temperature and pressure for sensors with resistance-, current-, and voltage output

Description

The universal double-set point controller type TFR2 does not only regulate humidity, temperature and pressure but also flow and speed of the wind. It is a digital microprocessor-controller allowing configuration with many standardized input signals Pt100, Pt1000, KTY-11-6, 0(2)...10VDC, 0(4)...20mA and thermocouple.

The TFR2 can be used as display, single set and double set point, with ON/OFF or PID-function. The self-optimisation function determines the optimum controller parameters for PID or PI controllers.

The controller disposes of two NO-relays, one logic output which can be freely configurated and a binary input for various functions. The TFR2 has also a programmable output function on faults.

The process value is shown on the display with 4 green figures. The relay position is displaid on the LED. All parameters and the measuring range are to be programmed with the three keys.

Technical details

inputPt100, Pt1000, KTY11-6
thermocouple, 0(2)10V, 0(4)20mA
measuring range programmable (-1999+9999)
output
1 logic output 5V/20mA
breaking capacity max. 3A ohmic load at 250VAC
sampling time
control characteristicsprogrammable
switching hysteresisprogrammable
mains supply
frequency
power consumtion max 5 VA
ambient temperature055°C
climatic conditions max. 75%r.F. no condensation
housing type plastic für panel mounting to DIN 43700
housing dimensions
operating positionany
electromagnetic compatibility
resistance to interference EN50082-2
interference emission EN50081-2
protective system
front IP65 to EN 60 529
rearIP20
weight0,2 kg

Operation of the Controller

Setting of the basic functions of the controller (configuration level):

In order to make the settings, it is necessary to change from the process value display to the configuration level, where the basic functions are set.

Press the P button for approx. 3 sec. until the parameter Pb .1 appears, press P several times until the parameter Y .0 appears, then press P again for another 3 sec. approx. The first parameter will appear on the configuration level (C111)

Now the display will show in change the parameter symbol and the parameter value. The parameters can be changed dynamically with the keys \mathbf{k} and \mathbf{v} . The setting will be automatically saved after 2 sec. approx.

On the display appears the parameter C111 (process value input)

Choose the desired transducer by pressing \blacktriangle or \blacksquare . It will be automatically saved after approx. 2 sec.

parameter	transducer
001	Pt100 (3-wire)
006	Pt1000 (3-wire)
601	KTY11-6
003	Pt100 (2-wire)
005	Pt1000 (2-wire)
039	Cu-CuNì "Ť"
040	Fe-CuNi "J"
041	Cu-CuNi "U"
042	Fe-CuNi "L"
043	NiCr-Ni "K"
044	Pt10Rh-Pt "S"
045	Pt13Rh-Pt "R"
046	Pt30Rh-Pt "B"
048	NiCrSi-NiSi "N"
052	standard signal 020mA
053	standard signal 420mA
063	standard signal 010V
071	standard signal 210V

By pressing **P** the parameter **C112** (decimal places/unit of process value) will appear

Choose the desired unit or number of decimal places by pressing \frown or \bigtriangledown . They will be automatically saved after 2 sec.

parameter	decimal places/ unit
0	9999/°C
1	999.9/°C
2	99.99/°C
3	9999/°F
4	999.9/°F
5	99.99/°F

By pressing **P** the parameter **C113** (controller type / output 1 / output 2) will appear.

Choose the desired controller type by pressing \blacktriangle or \checkmark . It will be saved after about 2 sec.

parameter	controller type	output 1	output 2
10 11 30 20 21 33	single setpoint (reversed) single setpoint (direct) double setpoint single setpoint (reversed) single setpoint (direct) double setpoint	controller controller reversed	limit comparator limit comparator controller direct controller controller controller reversed

reversed = heating (output is active when process value is below setpoint) direct = cooling (output is activ when process value is above setpoint)

By pressing P the parameter C114 (limit comparators LK) appears

lk1

Ik4

lk7

parameter	limit comparator
0	no function
1	lk 1
2	lk 2
3	lk 3
4	lk 4
5	lk 5
6	lk 6 lk 7
7	lk 7
8	lk 8

Limit comparator (alarm contact)

Press P again to get the parameter C115 (ramp function)

Choose the required ramp function by pressing \mathbf{N} or \mathbf{V} . It will be automatically saved after about 2 sec.

Parameter	Ramp function
0	ramp function off
1	ramp function (K/min)
2	ramp function (K/h)

Press P again to get the parameter C116 (outputs on fault)

Choose the required function by pressing \fbox or \blacktriangledown . It will be automatically saved after about 2 sec.

Parameter	Outputs on fault
0	0% output / lk off
1	100% output / lk off
2	-100% output / lk off
3	0% output / lk on
4	100% output / lk on

Press P again to get to parameter C117 (Binary input)

Choose the required function by pressing \mathbf{N} or \mathbf{V} . It will be automatically saved after about 2 sec.

	1112 page 1
Parameter	Function of binary input
0 1 2 3 4	no function key inhibit level inhibit ramp stop setpoint switching

Binäreingang

	۲' ۲				[]]	
Tastaturverriegelung	Bedienen über Tasten ist möglich.				Bedienen über Tasten ist nicht möglich.	
Ebenenverriegelung	Das S	Zugang zu den Ebenen ist möglich. Das Starten der Selbstoptimierung ist möglich.			Zugang zu den Ebenen nicht möglich. Das Starten der Selbstoptimierung ist nicht möglich.	
Alternativ zum Binärein- gang kann eine Ebenen- verriegelung über einen Code eingestellt werden (Binäreingang hat Priori- tät)	Code	Bediener- ebene	Parameter- ebene	Konfiguratio ebene	ns- P+▼ >5s	
	000	frei	frei	irei		
	001	frei	frei	verriegelt	╡╻╝╵╵╏╝┙ᢄ╠	
	071	frei	verriegel:	verriegelt		
	1-1	verriegelt	verriegel:	verriegelt		
Rampenstopp	Rampe läuft.				Rampe gestoppt.	
Sollwertumschaltung	Sollwert 5P / ist aktiv				Sollwert 5P 2 ist aktiv	
	Darste	ellung der -	entsprecher	iden Symbo	ble 5P \pm and 5P \oplus in der Bedienerebene.	

Continue to press **P** to get to the *parameter level* that offers according to the previous configuration the following parameters. Here again, select the requird value by pressing \mathbf{N} or \mathbf{V} . The values will be automatically saved after 2 seconds. To select the next parameter press **P** again.

Parameter	Explanation	Value range	Factory set	
SCL	start value of the standard signal	-1999 9999 Digit	0	
SCH	en value of the standard signal	-1999 9999 Digit	100	
SPL	lower setpoint limiting	-1999 9999 Digit	-200	
SPH	upper setpoint limiting	-1999 9999 Digit	850	
OFFS	process value correction	-1999 9999 Digit	0	
HYSt	switching differential of the limit comparator	0 9999 Digit	1	
SP 1	setpoint 1	SPL SPH	0	
SP2	setpoint 2	SPL SPH		
	(only with activated ramp function)		-	
AL	limit value of limit comarator	-1999 9999 Digit	0	
Pb.1	proportional band 1 (controller output 1)	0 9999 Digit	0	
	(influences P action of the controller,	3	-	
	at Pb=0 the controller shows ON/OFF action)			
Pb.2	proportional band 2 (controller output 2)	0 9999 Digit	0	
dt	derivative time	0 9999 Sekunden	80s	
	(influences D action of controller,			
	at dt=0 controller shows no D action)			
rt	reset time	0 9999 Sekunden	350s	
	(influences I action of controller,			
	at rt=0 controller shows no I action)			
CY 1	cycle time 1 (controller output 1)	1,0 999,9 Sekunden	20,0s	
CY 2	cycle time 2 (controller output 2)	1,0 999,9 Sekunden	20,0s	
db	contact spacing with double setpoint control	0 1000 Digit	0	
HYS.1	differential 1 (controller output 1)	0 9999 Digit	1	
HYS.2	differential 2 (controller output 2)	0 9999 Digit	1	
Y .0	working point	-100 100%	0%	
	(output process value = set point)			
Y.1	maximum output	0 100%	100%	
	(has to be 100 % at Pb=0)			
Y .2	minimum output	-100 +100%	-100%	
	(has to be 100 % at Pb=0)			
dF	filter time constant	0,0 100,0 Sekunden	0,6s	
rASd	ramp slope	0 999 Digit/h oder Digit/min		

Symbol	Bemerkungen	
đb	Kontaktabstand Bei Dreipunktregler	
HYS !	Schaltdifferenz 1 (1.Reglerausgang) Schaltdifferenz 2 (2.Reglerausgang) Für Regler mit Pb=0	
HYS2		

Parameter level

It is also possible to change directly from the *parameter level* to the process value indication. Press therefore **P** for 3 seconds until **Pb.1** appears. The parameter can now be called and changed as described.

Setpoint adjustment and indication of ramp setpoint

To change the setpoint directly from the process value indication press **P. SP** or **SPr** will appear. Adjust these parameter againg by pressing \square or \blacksquare to the required value. It will be automatically saved after about 2 seconds. Change back to the process value indication by pressing **P** again.

Alarm messages: The display for the process value flashes 1999

The causes may be: over/underrange of process value e. g. by sensor break/short circuit

the measurement is outside the control range of the connected sensor, display overflow;

Controller and limit comparators referred to the process value input behave in accordance with the configuration of the outputs.

Selbstoptimierung

Die Selbstoptimierung SO ermittelt die optimalen Reglerparameter für einen PiD- oder PI-Regler.

Folgende Regierparameter werden bestimmt: -E, dE, Pb . I, Pb .2, C5 - I, C5 .2, dF

In Abhängigkeit von der Größe der Regelabweichung wählt der Regler zwischen zwei Verfahren a oder b aus:

Example of a configuration

problem: In a climatic chamber humidity has to be measured by a air humidity sensro (output 0... 10 V). By steering a humidifier with the *TFR2 controller* a relative humidity of 80 % rh with PID action has to be controlled. At a deviation of more than +/- 10 % of the setpoint value an alarm signal has to be issued.

course of controller configuration:

1. set basic controller functions on configuration level

In order to effect the necessary adjustments change from the process value indication to the configuration level. Therefore press **P** for about 3 seconds until the Parameter **Pb.1** appears. Go on pressing **P** until the parameter **Y .0** appears, then press **P** again for about 3 seconds. The first parameter will appear on configuration level (*C111*).

Now the display will show in change the parameter symbol and the parameter value. The parameters can be changed dynamically with the keys \mathbf{n} and \mathbf{v} . The setting will be automatically saved after 2 sec. approx. Change to the next parameter by pressing **P**.

2. Input of parameters

parameter	setting	description
C111	063	sensor signal 0 10V
C112	1	values will be displayed with one decimal place
C113	10	output 1 (K1) is the controller output for humidification
	_	output 2 (K2) is the alarm output (limit comparator)
C114	2	alarm has to be activated when a preset tolerance (+ or -)
	_	of the setpoint has been reached.
C115	0	no ramp function necessary
C116	3	on sensor breakage the humidification has to be switched off and
	_	the alarm has to be activated
C117	0	binary input without function
SCL	0	inital value of the standard signal 0%rh
SCH	100	final value of the standard signal 100%rh
SPL	75	lower setpoint limit 75%rh
SPH	85	upper setpoint limit 85%rh - the setpoint can only be changed
		between 75 and 85 % rh
OFFS	0	process value correction not necessary
HYSt	0	differential for alarm not activated
AL	10	at a deviation of the setpoint of +/-10%rh an alarm has to be activated
Pb .1	10	the proportional band has to be 10%
dt	20	derivative time has to be 20 seconds
rt	50	reset time has to be 50 seconds
CY 1	20	cycle time of output 1 has to be 20 seconds
HYS.1	1	differential at output 1 has to be 1 digit (0,1%rh)
Y .0	0	if the setpoint is reached humidification will be stopped
Y.1	100	maximum output (power) can be 100%
Y.2	-100	minimum output (power) can be reduced to 0%
dF	0.6	the filter time constant is set optimally to 0,6 seconds approx.
SP	80.0	the setpoint has to be 80%rh

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04

Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Сургут (3462)77-98-35 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16

Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Единый адрес: gct@nt-rt.ru

Веб-сайт: www.galltec.nt-rt.ru